REPST #3
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: AirQuality
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 6
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 35
|
||||
steps_per_day: 24
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 6
|
||||
n_heads: 1
|
||||
num_nodes: 35
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 6
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: BJTaxi-InFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 1024
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 32
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: BJTaxi-OutFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 1024
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 32
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: METR-LA
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 207
|
||||
steps_per_day: 288
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 207
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: NYCBike-InFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 128
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 32
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: NYCBike-OutFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 128
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 32
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: PEMS-BAY
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 325
|
||||
steps_per_day: 288
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 325
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
basic:
|
||||
dataset: SolarEnergy
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: FPT
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 137
|
||||
steps_per_day: 24
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
d_model: 768
|
||||
gpt_layers: 9
|
||||
gpt_path: ./GPT-2
|
||||
input_dim: 1
|
||||
n_heads: 1
|
||||
num_nodes: 137
|
||||
patch_len: 6
|
||||
pred_len: 24
|
||||
seq_len: 24
|
||||
stride: 7
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 100
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
weight_decay: 0
|
||||
|
|
@ -206,7 +206,6 @@ class ASTRA(nn.Module):
|
|||
enc_out, n_vars = self.patch_embedding(x_enc) # (B, N, d_model * input_dim)
|
||||
# 应用图增强编码器(自动生成图结构)
|
||||
graph_enhanced = self.graph_encoder(enc_out) # (B, N, K * hidden_dim)
|
||||
# 特征融合 - 现在两个张量都是三维的 [B, N, d_model]
|
||||
enc_out = torch.cat([enc_out, graph_enhanced], dim=-1)
|
||||
enc_out = self.feature_fusion(enc_out)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,45 @@
|
|||
import torch.nn as nn
|
||||
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
||||
from einops import rearrange
|
||||
|
||||
class fpt(nn.Module):
|
||||
def __init__(self, configs):
|
||||
super(fpt, self).__init__()
|
||||
self.patch_len = configs['patch_len']
|
||||
self.stride = configs['stride']
|
||||
self.input_dim = configs['input_dim']
|
||||
self.seq_len = configs['seq_len']
|
||||
self.pred_len = configs['pred_len']
|
||||
self.gpt_layers = configs['gpt_layers'] # 使用的GPT2层数
|
||||
self.d_model = configs['d_model']
|
||||
self.gpt_path = configs['gpt_path']
|
||||
|
||||
self.patch_num = int((self.seq_len - self.patch_len) / self.stride + 2) # 补丁数量
|
||||
self.padding_patch_layer = nn.ReplicationPad1d((0, self.stride))
|
||||
|
||||
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True)
|
||||
self.gpts.h = self.gpts.h[:self.gpt_layers]
|
||||
for i, (name, param) in enumerate(self.gpts.named_parameters()):
|
||||
if 'wpe' in name:
|
||||
param.requires_grad = True
|
||||
else:
|
||||
param.requires_grad = False
|
||||
|
||||
self.in_layer = nn.Linear(self.patch_len, self.d_model)
|
||||
self.out_layer = nn.Linear(self.d_model * self.patch_num, self.pred_len)
|
||||
|
||||
def forward(self, x):
|
||||
B, L, M = x.shape
|
||||
x = x[..., :self.input_dim]
|
||||
x = rearrange(x, 'b l m -> b m l')
|
||||
|
||||
x = self.padding_patch_layer(x)
|
||||
x = x.unfold(dimension = -1, size = self.patch_len, step = self.stride)
|
||||
x = rearrange(x, 'b m n p -> (b m) n p')
|
||||
|
||||
outputs = self.in_layer(x)
|
||||
outputs = self.gpts(inputs_embeds=outputs).last_hidden_state
|
||||
outputs = self.out_layer(outputs.reshape(B*M, -1))
|
||||
outputs = rearrange(outputs, '(b m) l -> b l m', b = B)
|
||||
return outputs
|
||||
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
[
|
||||
{
|
||||
"name": "FPT",
|
||||
"module": "model.FPT.fpt",
|
||||
"entry": "fpt"
|
||||
}
|
||||
]
|
||||
6
train.py
6
train.py
|
|
@ -90,9 +90,9 @@ def main(model, data, debug=False):
|
|||
if __name__ == "__main__":
|
||||
# 调试用
|
||||
# model_list = ["iTransformer", "PatchTST", "HI"]
|
||||
# model_list = ["ASTRA_v3"]
|
||||
model_list = ["PatchTST"]
|
||||
dataset_list = ["AirQuality", "SolarEnergy", "PEMS-BAY", "METR-LA", "BJTaxi-InFlow", "BJTaxi-OutFlow", "NYCBike-InFlow", "NYCBike-OutFlow"]
|
||||
model_list = ["FPT"]
|
||||
# model_list = ["PatchTST"]
|
||||
dataset_list = ["METR-LA", "BJTaxi-InFlow", "BJTaxi-OutFlow", "NYCBike-InFlow", "NYCBike-OutFlow"]
|
||||
# dataset_list = ["AirQuality"]
|
||||
# dataset_list = ["METR-LA"]
|
||||
main(model_list, dataset_list, debug = False)
|
||||
|
|
@ -20,7 +20,7 @@ def select_trainer(
|
|||
scaler, args, lr_scheduler
|
||||
)
|
||||
|
||||
if model_name in {"HI", "PatchTST", "iTransformer"}:
|
||||
if model_name in {"HI", "PatchTST", "iTransformer", "FPT"}:
|
||||
return TSTrainer(*base_args)
|
||||
|
||||
trainer_map = {
|
||||
|
|
|
|||
Loading…
Reference in New Issue