REPST #3
|
|
@ -16,38 +16,4 @@ def parse_args():
|
|||
else:
|
||||
raise ValueError("Configuration file path must be provided using --config")
|
||||
|
||||
# Update configuration with command-line arguments
|
||||
# Merge 'basic' configuration into the root dictionary
|
||||
# config.update(config.get('basic', {}))
|
||||
|
||||
# Add adaptive configuration based on external commands
|
||||
if "data" in config and "type" in config["data"]:
|
||||
config["data"]["type"] = config["basic"].get("dataset", config["data"]["type"])
|
||||
if "model" in config and "type" in config["model"]:
|
||||
config["model"]["type"] = config["basic"].get("model", config["model"]["type"])
|
||||
if "model" in config and "rnn_units" in config["model"]:
|
||||
config["model"]["rnn_units"] = config["basic"].get(
|
||||
"rnn", config["model"]["rnn_units"]
|
||||
)
|
||||
if "model" in config and "embed_dim" in config["model"]:
|
||||
config["model"]["embed_dim"] = config["basic"].get(
|
||||
"emb", config["model"]["embed_dim"]
|
||||
)
|
||||
if "data" in config and "sample" in config["data"]:
|
||||
config["data"]["sample"] = config["basic"].get(
|
||||
"sample", config["data"]["sample"]
|
||||
)
|
||||
if "train" in config and "device" in config["train"]:
|
||||
config["train"]["device"] = config["basic"].get(
|
||||
"device", config["train"]["device"]
|
||||
)
|
||||
if "train" in config and "debug" in config["train"]:
|
||||
config["train"]["debug"] = config["basic"].get(
|
||||
"debug", config["train"]["debug"]
|
||||
)
|
||||
if "cuda" in config:
|
||||
config["cuda"] = config["basic"].get("cuda", config["cuda"])
|
||||
if "mode" in config:
|
||||
config["mode"] = config["basic"].get("mode", config["mode"])
|
||||
|
||||
return config
|
||||
|
|
|
|||
|
|
@ -1,134 +0,0 @@
|
|||
import os
|
||||
import re
|
||||
|
||||
# 配置路径
|
||||
CONFIG_DIR = "/user/czzhangheng/code/TrafficWheel/config"
|
||||
LAUNCH_FILE = "/user/czzhangheng/code/TrafficWheel/.vscode/launch.json"
|
||||
|
||||
# 遍历所有yaml文件
|
||||
def find_all_yaml_files(directory):
|
||||
yaml_files = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if file.endswith(".yaml") and not file.startswith("BJTaxi"):
|
||||
yaml_files.append(os.path.join(root, file))
|
||||
return yaml_files
|
||||
|
||||
# 生成launch配置字符串
|
||||
def generate_launch_config_string(yaml_files):
|
||||
config_strings = []
|
||||
|
||||
for file_path in yaml_files:
|
||||
# 提取模型名和数据集名
|
||||
relative_path = os.path.relpath(file_path, CONFIG_DIR)
|
||||
model_name = relative_path.split(os.sep)[0]
|
||||
dataset_name = os.path.splitext(os.path.basename(file_path))[0]
|
||||
|
||||
# 处理v2版本
|
||||
if "v2_" in dataset_name:
|
||||
model_display_name = f"{model_name}_v2"
|
||||
dataset_display_name = dataset_name.replace("v2_", "")
|
||||
else:
|
||||
model_display_name = model_name
|
||||
dataset_display_name = dataset_name
|
||||
|
||||
# 生成配置字符串
|
||||
config_string = f'''
|
||||
{{
|
||||
"name": "{model_display_name}: {dataset_display_name}",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "run.py",
|
||||
"console": "integratedTerminal",
|
||||
"args": "--config ./config/{model_name}/{os.path.basename(file_path)}"
|
||||
}}'''
|
||||
|
||||
config_strings.append(config_string)
|
||||
|
||||
return ",".join(config_strings)
|
||||
|
||||
# 读取现有的launch.json文件,提取配置名称
|
||||
def get_existing_config_names():
|
||||
with open(LAUNCH_FILE, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# 提取所有配置名称
|
||||
name_pattern = re.compile(r'"name"\s*:\s*"([^"]+)"')
|
||||
matches = name_pattern.findall(content)
|
||||
|
||||
return set(matches)
|
||||
|
||||
# 生成新的配置,过滤掉已存在的
|
||||
def generate_new_configs(yaml_files, existing_names):
|
||||
new_configs = []
|
||||
|
||||
for file_path in yaml_files:
|
||||
# 提取模型名和数据集名
|
||||
relative_path = os.path.relpath(file_path, CONFIG_DIR)
|
||||
model_name = relative_path.split(os.sep)[0]
|
||||
dataset_name = os.path.splitext(os.path.basename(file_path))[0]
|
||||
|
||||
# 处理v2版本
|
||||
if "v2_" in dataset_name:
|
||||
model_display_name = f"{model_name}_v2"
|
||||
dataset_display_name = dataset_name.replace("v2_", "")
|
||||
else:
|
||||
model_display_name = model_name
|
||||
dataset_display_name = dataset_name
|
||||
|
||||
# 生成配置名称
|
||||
config_name = f"{model_display_name}: {dataset_display_name}"
|
||||
|
||||
# 如果配置不存在,则添加
|
||||
if config_name not in existing_names:
|
||||
new_configs.append(file_path)
|
||||
|
||||
return new_configs
|
||||
|
||||
# 更新launch.json文件
|
||||
def update_launch_json(new_configs_string):
|
||||
with open(LAUNCH_FILE, 'r') as f:
|
||||
content = f.read()
|
||||
|
||||
# 找到configurations数组的结束位置
|
||||
configs_end_match = re.search(r'\s*\]\s*\}', content)
|
||||
if not configs_end_match:
|
||||
return False
|
||||
|
||||
# 插入新的配置
|
||||
insert_pos = configs_end_match.start()
|
||||
new_content = content[:insert_pos] + new_configs_string + content[insert_pos:]
|
||||
|
||||
# 保存文件
|
||||
with open(LAUNCH_FILE, 'w') as f:
|
||||
f.write(new_content)
|
||||
|
||||
return True
|
||||
|
||||
# 主函数
|
||||
def main():
|
||||
# 查找所有yaml文件
|
||||
yaml_files = find_all_yaml_files(CONFIG_DIR)
|
||||
|
||||
# 获取现有配置名称
|
||||
existing_names = get_existing_config_names()
|
||||
|
||||
# 生成新的配置,过滤掉已存在的
|
||||
new_config_files = generate_new_configs(yaml_files, existing_names)
|
||||
|
||||
if not new_config_files:
|
||||
print("No new configurations to add")
|
||||
return
|
||||
|
||||
# 生成新的配置字符串
|
||||
new_configs_string = generate_launch_config_string(new_config_files)
|
||||
|
||||
# 更新launch.json文件
|
||||
if update_launch_json(new_configs_string):
|
||||
print(f"Added {len(new_config_files)} new launch configurations")
|
||||
print(f"Total configurations: {len(existing_names) + len(new_config_files)}")
|
||||
else:
|
||||
print("Failed to update launch.json")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
4
mypy.ini
4
mypy.ini
|
|
@ -1,4 +0,0 @@
|
|||
[mypy]
|
||||
explicit_package_bases = True
|
||||
ignore_missing_imports = True
|
||||
no_site_packages = True
|
||||
95
run_tests.sh
95
run_tests.sh
|
|
@ -1,95 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# 设置默认模型名和数据集列表
|
||||
MODEL_NAME="STAEFormer"
|
||||
DATASETS=(
|
||||
"METR-LA"
|
||||
"PEMS-BAY"
|
||||
"NYCBike-InFlow"
|
||||
"NYCBike-OutFlow"
|
||||
"AirQuality"
|
||||
"SolarEnergy"
|
||||
)
|
||||
|
||||
# 初始化统计变量
|
||||
success_count=0
|
||||
failure_count=0
|
||||
missing_count=0
|
||||
total_count=0
|
||||
success_datasets=()
|
||||
failure_datasets=()
|
||||
missing_datasets=()
|
||||
|
||||
# 检查是否有参数传入来覆盖默认值
|
||||
if [ $# -gt 0 ]; then
|
||||
MODEL_NAME=$1
|
||||
# 如果传入了更多参数,使用它们作为数据集列表
|
||||
if [ $# -gt 1 ]; then
|
||||
DATASETS=(${@:2})
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "使用模型: $MODEL_NAME"
|
||||
echo "数据集列表: ${DATASETS[*]}"
|
||||
echo "开始测试..."
|
||||
echo ""
|
||||
|
||||
# 循环测试每个数据集
|
||||
for dataset in "${DATASETS[@]}"; do
|
||||
total_count=$((total_count + 1))
|
||||
# 构建配置文件路径
|
||||
CONFIG_PATH="config/${MODEL_NAME}/${dataset}.yaml"
|
||||
|
||||
echo "测试数据集: $dataset"
|
||||
echo "使用配置文件: $CONFIG_PATH"
|
||||
|
||||
# 检查配置文件是否存在
|
||||
if [ ! -f "$CONFIG_PATH" ]; then
|
||||
echo "错误: 配置文件 $CONFIG_PATH 不存在!"
|
||||
missing_count=$((missing_count + 1))
|
||||
missing_datasets+=("$dataset")
|
||||
echo "----------------------------------------"
|
||||
continue
|
||||
fi
|
||||
|
||||
# 执行测试命令,同时捕获输出并显示在控制台上
|
||||
echo "执行: python run.py --config $CONFIG_PATH"
|
||||
output=$(python run.py --config "$CONFIG_PATH" 2>&1 | tee /dev/tty)
|
||||
|
||||
# 如果没有找到明确的标记,回退到检查退出码
|
||||
if [ $? -eq 0 ]; then
|
||||
echo "数据集 $dataset 测试成功! (基于退出码)"
|
||||
success_count=$((success_count + 1))
|
||||
success_datasets+=("$dataset")
|
||||
else
|
||||
echo "数据集 $dataset 测试失败! (基于退出码)"
|
||||
failure_count=$((failure_count + 1))
|
||||
failure_datasets+=("$dataset")
|
||||
fi
|
||||
|
||||
echo "----------------------------------------"
|
||||
done
|
||||
|
||||
# 输出总结
|
||||
echo "======================================="
|
||||
echo "测试总结"
|
||||
echo "======================================="
|
||||
echo "总数据集数量: $total_count"
|
||||
echo "成功数量: $success_count"
|
||||
echo "失败数量: $failure_count"
|
||||
echo "缺失配置文件数量: $missing_count"
|
||||
|
||||
if [ ${#success_datasets[@]} -gt 0 ]; then
|
||||
echo "成功的数据集: ${success_datasets[*]}"
|
||||
fi
|
||||
|
||||
if [ ${#failure_datasets[@]} -gt 0 ]; then
|
||||
echo "失败的数据集: ${failure_datasets[*]}"
|
||||
fi
|
||||
|
||||
if [ ${#missing_datasets[@]} -gt 0 ]; then
|
||||
echo "缺失配置的数据集: ${missing_datasets[*]}"
|
||||
fi
|
||||
|
||||
echo "======================================="
|
||||
echo "所有测试完成!"
|
||||
5406
test_results.txt
5406
test_results.txt
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,63 @@
|
|||
import yaml
|
||||
import torch
|
||||
|
||||
import utils.initializer as init
|
||||
from dataloader.loader_selector import get_dataloader
|
||||
from trainer.trainer_selector import select_trainer
|
||||
|
||||
def run(config):
|
||||
init.init_seed(config["basic"]["seed"])
|
||||
model = init.init_model(config)
|
||||
train_loader, val_loader, test_loader, scaler, *extra_data = get_dataloader(
|
||||
config, normalizer=config["data"]["normalizer"], single=False
|
||||
)
|
||||
loss = init.init_loss(config, scaler)
|
||||
optimizer, lr_scheduler = init.init_optimizer(model, config["train"])
|
||||
init.create_logs(config)
|
||||
trainer = select_trainer(
|
||||
model,
|
||||
loss, optimizer,
|
||||
train_loader, val_loader, test_loader, scaler,
|
||||
config,
|
||||
lr_scheduler, extra_data,
|
||||
)
|
||||
|
||||
# 开始训练
|
||||
match config["basic"]["mode"]:
|
||||
case "train":
|
||||
trainer.train()
|
||||
case "test":
|
||||
model.load_state_dict(
|
||||
torch.load(
|
||||
f"./pre-trained/{config['basic']['model']}/{config['basic']['dataset']}.pth",
|
||||
map_location=config["basic"]["device"],
|
||||
weights_only=True,
|
||||
)
|
||||
)
|
||||
trainer.test(
|
||||
model.to(config["basic"]["device"]),
|
||||
trainer.args, test_loader, scaler,
|
||||
trainer.logger,
|
||||
)
|
||||
case _:
|
||||
raise ValueError(f"Unsupported mode: {config['basic']['mode']}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 指定模型
|
||||
model_list = ["HI"]
|
||||
# 指定数据集
|
||||
dataset_list = ["AirQuality", "SolarEnergy", "PEMS-BAY", "METR-LA", "BJTaxi-Inflow", "BJTaxi-Outflow", "NYCBike-Inflow", "NYCBike-Outflow"]
|
||||
device = "cuda:0" # 指定设备
|
||||
seed = 2023 # 随机种子
|
||||
for model in model_list:
|
||||
for dataset in dataset_list:
|
||||
config_path = f"./config/{model}/{dataset}.yaml"
|
||||
with open(config_path, "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
config["basic"]["device"] = device
|
||||
config["basic"]["seed"] = seed
|
||||
print(f"\nRunning {model} on {dataset} with seed {seed} on {device}")
|
||||
print(f"config: {config}")
|
||||
run(config)
|
||||
|
||||
|
|
@ -8,125 +8,31 @@ from utils.logger import get_logger
|
|||
from utils.loss_function import all_metrics
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class TrainingStats:
|
||||
"""记录训练过程中的统计信息"""
|
||||
|
||||
def __init__(self, device):
|
||||
self.device = device
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""重置所有统计数据"""
|
||||
self.gpu_mem_usage_list = []
|
||||
self.cpu_mem_usage_list = []
|
||||
self.train_time_list = []
|
||||
self.infer_time_list = []
|
||||
self.total_iters = 0
|
||||
self.start_time = None
|
||||
self.end_time = None
|
||||
|
||||
def start_training(self):
|
||||
"""记录训练开始时间"""
|
||||
self.start_time = time.time()
|
||||
|
||||
def end_training(self):
|
||||
"""记录训练结束时间"""
|
||||
self.end_time = time.time()
|
||||
|
||||
def record_step_time(self, duration, mode):
|
||||
"""记录单步耗时和总迭代次数"""
|
||||
if mode == "train":
|
||||
self.train_time_list.append(duration)
|
||||
else:
|
||||
self.infer_time_list.append(duration)
|
||||
self.total_iters += 1
|
||||
|
||||
def record_memory_usage(self):
|
||||
"""记录当前 GPU 和 CPU 内存占用"""
|
||||
process = psutil.Process(os.getpid())
|
||||
cpu_mem = process.memory_info().rss / (1024**2)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024**2)
|
||||
torch.cuda.reset_peak_memory_stats(device=self.device)
|
||||
else:
|
||||
gpu_mem = 0.0
|
||||
|
||||
self.cpu_mem_usage_list.append(cpu_mem)
|
||||
self.gpu_mem_usage_list.append(gpu_mem)
|
||||
|
||||
def _calculate_average(self, values_list):
|
||||
"""安全计算平均值,避免除零错误"""
|
||||
return sum(values_list) / len(values_list) if values_list else 0
|
||||
|
||||
def report(self, logger):
|
||||
"""在训练结束时输出汇总统计"""
|
||||
if not self.start_time or not self.end_time:
|
||||
logger.warning("TrainingStats: start/end time not recorded properly.")
|
||||
return
|
||||
|
||||
total_time = self.end_time - self.start_time
|
||||
avg_gpu_mem = self._calculate_average(self.gpu_mem_usage_list)
|
||||
avg_cpu_mem = self._calculate_average(self.cpu_mem_usage_list)
|
||||
avg_train_time = self._calculate_average(self.train_time_list)
|
||||
avg_infer_time = self._calculate_average(self.infer_time_list)
|
||||
iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
|
||||
|
||||
logger.info("===== Training Summary =====")
|
||||
logger.info(f"Total training time: {total_time:.2f} s")
|
||||
logger.info(f"Total iterations: {self.total_iters}")
|
||||
logger.info(f"Average iterations per second: {iters_per_sec:.2f}")
|
||||
logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB")
|
||||
logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB")
|
||||
if avg_train_time:
|
||||
logger.info(f"Average training step time: {avg_train_time * 1000:.2f} ms")
|
||||
if avg_infer_time:
|
||||
logger.info(f"Average inference step time: {avg_infer_time * 1000:.2f} ms")
|
||||
|
||||
|
||||
class Trainer:
|
||||
"""模型训练器,负责整个训练流程的管理"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler=None,
|
||||
):
|
||||
def __init__(self, model, loss, optimizer,
|
||||
train_loader, val_loader, test_loader, scaler,
|
||||
args, lr_scheduler=None,):
|
||||
# 设备和基本参数
|
||||
self.config = args
|
||||
self.device = args["basic"]["device"]
|
||||
train_args = args["train"]
|
||||
|
||||
# 模型和训练相关组件
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
|
||||
# 数据加载器
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
|
||||
# 数据处理工具
|
||||
self.scaler = scaler
|
||||
self.args = train_args
|
||||
|
||||
# 统计信息
|
||||
self.train_per_epoch = len(train_loader)
|
||||
self.val_per_epoch = len(val_loader) if val_loader else 0
|
||||
|
||||
# 初始化路径、日志和统计
|
||||
self._initialize_paths(train_args)
|
||||
self._initialize_logger(train_args)
|
||||
self._initialize_stats()
|
||||
|
||||
def _initialize_paths(self, args):
|
||||
"""初始化模型保存路径"""
|
||||
|
|
@ -138,24 +44,14 @@ class Trainer:
|
|||
"""初始化日志记录器"""
|
||||
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
|
||||
os.makedirs(args["log_dir"], exist_ok=True)
|
||||
self.logger = get_logger(
|
||||
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
|
||||
)
|
||||
self.logger = get_logger(args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"])
|
||||
self.logger.info(f"Experiment log path in: {args['log_dir']}")
|
||||
|
||||
def _initialize_stats(self):
|
||||
"""初始化统计信息记录器"""
|
||||
self.stats = TrainingStats(device=self.device)
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
"""运行一个训练/验证/测试epoch"""
|
||||
# 设置模型模式和是否进行优化
|
||||
if mode == "train":
|
||||
self.model.train()
|
||||
optimizer_step = True
|
||||
else:
|
||||
self.model.eval()
|
||||
optimizer_step = False
|
||||
if mode == "train": self.model.train(); optimizer_step = True
|
||||
else: self.model.eval(); optimizer_step = False
|
||||
|
||||
# 初始化变量
|
||||
total_loss = 0
|
||||
|
|
@ -169,73 +65,42 @@ class Trainer:
|
|||
total=len(dataloader),
|
||||
desc=f"{mode.capitalize()} Epoch {epoch}"
|
||||
)
|
||||
|
||||
for _, (data, target) in progress_bar:
|
||||
# 记录步骤开始时间
|
||||
start_time = time.time()
|
||||
|
||||
# 前向传播
|
||||
# 转移数据
|
||||
data = data.to(self.device)
|
||||
target = target.to(self.device)
|
||||
label = target[..., : self.args["output_dim"]]
|
||||
output = self.model(data).to(self.device)
|
||||
# if output.shape != label.shape:
|
||||
# import sys
|
||||
# print(f"[Wrong]: Output shape: {output.shape}, Label shape: {label.shape}")
|
||||
# sys.exit(1)
|
||||
# else:
|
||||
# import sys
|
||||
# print(f"[Right]: Output shape: {output.shape}, Label shape: {label.shape}")
|
||||
# sys.exit(0)
|
||||
# 计算loss和反归一化loss
|
||||
output = self.model(data)
|
||||
loss = self.loss(output, label)
|
||||
|
||||
# 反归一化
|
||||
d_output = self.scaler.inverse_transform(output)
|
||||
d_label = self.scaler.inverse_transform(label)
|
||||
|
||||
# 反向传播和优化(仅在训练模式)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# 梯度裁剪(如果需要)
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(), self.args["max_grad_norm"]
|
||||
)
|
||||
self.optimizer.step()
|
||||
|
||||
# 反归一化的loss
|
||||
d_loss = self.loss(d_output, d_label)
|
||||
|
||||
# 记录步骤时间和内存使用
|
||||
step_time = time.time() - start_time
|
||||
self.stats.record_step_time(step_time, mode)
|
||||
|
||||
# 累积损失和预测结果
|
||||
total_loss += d_loss.item()
|
||||
y_pred.append(d_output.detach().cpu())
|
||||
y_true.append(d_label.detach().cpu())
|
||||
|
||||
# 反向传播和优化(仅在训练模式)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
# 梯度裁剪(如果需要)
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
|
||||
self.optimizer.step()
|
||||
# 更新进度条
|
||||
progress_bar.set_postfix(loss=d_loss.item())
|
||||
|
||||
# 合并所有批次的预测结果
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 计算平均损失
|
||||
# 计算损失并记录指标
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
|
||||
# 计算并记录指标
|
||||
mae, rmse, mape = all_metrics(
|
||||
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
|
||||
)
|
||||
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
self.logger.info(
|
||||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
|
||||
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||||
)
|
||||
|
||||
# 记录内存使用情况
|
||||
self.stats.record_memory_usage()
|
||||
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
|
|
@ -248,28 +113,22 @@ class Trainer:
|
|||
return self._run_epoch(epoch, self.test_loader, "test")
|
||||
|
||||
def train(self):
|
||||
"""执行完整的训练流程"""
|
||||
# 初始化最佳模型和损失记录
|
||||
# 初始化记录
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float("inf"), float("inf")
|
||||
not_improved_count = 0
|
||||
|
||||
# 开始训练
|
||||
self.stats.start_training()
|
||||
self.logger.info("Training process started")
|
||||
|
||||
# 训练循环
|
||||
for epoch in range(1, self.args["epochs"] + 1):
|
||||
# 训练、验证和测试一个epoch
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
|
||||
# 检查梯度爆炸
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning("Gradient explosion detected. Ending...")
|
||||
break
|
||||
|
||||
# 更新最佳验证模型
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
|
|
@ -278,30 +137,19 @@ class Trainer:
|
|||
self.logger.info("Best validation model saved!")
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
# 检查早停条件
|
||||
# 早停
|
||||
if self._should_early_stop(not_improved_count):
|
||||
break
|
||||
|
||||
# 更新最佳测试模型
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
# 保存最佳模型
|
||||
if not self.args["debug"]:
|
||||
self._save_best_models(best_model, best_test_model)
|
||||
|
||||
# 结束训练并输出统计信息
|
||||
self.stats.end_training()
|
||||
self.stats.report(self.logger)
|
||||
|
||||
# 最终评估
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
# 输出模型参数量
|
||||
self._log_model_params()
|
||||
|
||||
def _should_early_stop(self, not_improved_count):
|
||||
"""检查是否满足早停条件"""
|
||||
if (
|
||||
|
|
@ -331,20 +179,35 @@ class Trainer:
|
|||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
"""对模型进行评估并输出性能指标"""
|
||||
# 确定设备信息
|
||||
device = None
|
||||
output_dim = None
|
||||
# 处理不同的参数格式
|
||||
if isinstance(args, dict):
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
device = args["basic"]["device"]
|
||||
output_dim = args["train"]["output_dim"]
|
||||
else:
|
||||
# 只有train_args情况,从模型获取设备
|
||||
device = next(model.parameters()).device
|
||||
output_dim = args["output_dim"]
|
||||
else:
|
||||
raise ValueError(f"Unsupported args type: {type(args)}")
|
||||
|
||||
# 加载模型检查点(如果提供了路径)
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.to(args["basic"]["device"])
|
||||
model.to(device)
|
||||
|
||||
# 设置为评估模式
|
||||
model.eval()
|
||||
|
|
@ -355,27 +218,40 @@ class Trainer:
|
|||
# 不计算梯度的情况下进行预测
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
label = target[..., : args["output_dim"]]
|
||||
# 将数据和标签移动到指定设备
|
||||
data = data.to(device)
|
||||
target = target.to(device)
|
||||
|
||||
label = target[..., : output_dim]
|
||||
output = model(data)
|
||||
y_pred.append(output.detach().cpu())
|
||||
y_true.append(label.detach().cpu())
|
||||
|
||||
|
||||
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
|
||||
|
||||
# 获取metrics参数
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
mae_thresh = args["train"]["mae_thresh"]
|
||||
mape_thresh = args["train"]["mape_thresh"]
|
||||
else:
|
||||
# 只有train_args情况
|
||||
mae_thresh = args["mae_thresh"]
|
||||
mape_thresh = args["mape_thresh"]
|
||||
|
||||
# 计算并记录每个时间步的指标
|
||||
for t in range(d_y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(
|
||||
d_y_pred[:, t, ...],
|
||||
d_y_true[:, t, ...],
|
||||
args["mae_thresh"],
|
||||
args["mape_thresh"],
|
||||
mae_thresh,
|
||||
mape_thresh,
|
||||
)
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
# 计算并记录平均指标
|
||||
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, args["mae_thresh"], args["mape_thresh"])
|
||||
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
|
||||
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
@staticmethod
|
||||
|
|
|
|||
|
|
@ -0,0 +1,420 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
import psutil
|
||||
import torch
|
||||
from utils.logger import get_logger
|
||||
from utils.loss_function import all_metrics
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
# class TrainingStats:
|
||||
# """记录训练过程中的统计信息"""
|
||||
|
||||
# def __init__(self, device):
|
||||
# self.device = device
|
||||
# self.reset()
|
||||
|
||||
# def reset(self):
|
||||
# """重置所有统计数据"""
|
||||
# self.gpu_mem_usage_list = []
|
||||
# self.cpu_mem_usage_list = []
|
||||
# self.train_time_list = []
|
||||
# self.infer_time_list = []
|
||||
# self.total_iters = 0
|
||||
# self.start_time = None
|
||||
# self.end_time = None
|
||||
|
||||
# def start_training(self):
|
||||
# """记录训练开始时间"""
|
||||
# self.start_time = time.time()
|
||||
|
||||
# def end_training(self):
|
||||
# """记录训练结束时间"""
|
||||
# self.end_time = time.time()
|
||||
|
||||
# def record_step_time(self, duration, mode):
|
||||
# """记录单步耗时和总迭代次数"""
|
||||
# if mode == "train":
|
||||
# self.train_time_list.append(duration)
|
||||
# else:
|
||||
# self.infer_time_list.append(duration)
|
||||
# self.total_iters += 1
|
||||
|
||||
# def record_memory_usage(self):
|
||||
# """记录当前 GPU 和 CPU 内存占用"""
|
||||
# process = psutil.Process(os.getpid())
|
||||
# cpu_mem = process.memory_info().rss / (1024**2)
|
||||
|
||||
# if torch.cuda.is_available():
|
||||
# gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024**2)
|
||||
# torch.cuda.reset_peak_memory_stats(device=self.device)
|
||||
# else:
|
||||
# gpu_mem = 0.0
|
||||
|
||||
# self.cpu_mem_usage_list.append(cpu_mem)
|
||||
# self.gpu_mem_usage_list.append(gpu_mem)
|
||||
|
||||
# def _calculate_average(self, values_list):
|
||||
# """安全计算平均值,避免除零错误"""
|
||||
# return sum(values_list) / len(values_list) if values_list else 0
|
||||
|
||||
# def report(self, logger):
|
||||
# """在训练结束时输出汇总统计"""
|
||||
# if not self.start_time or not self.end_time:
|
||||
# logger.warning("TrainingStats: start/end time not recorded properly.")
|
||||
# return
|
||||
|
||||
# total_time = self.end_time - self.start_time
|
||||
# avg_gpu_mem = self._calculate_average(self.gpu_mem_usage_list)
|
||||
# avg_cpu_mem = self._calculate_average(self.cpu_mem_usage_list)
|
||||
# avg_train_time = self._calculate_average(self.train_time_list)
|
||||
# avg_infer_time = self._calculate_average(self.infer_time_list)
|
||||
# iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
|
||||
|
||||
# logger.info("===== Training Summary =====")
|
||||
# logger.info(f"Total training time: {total_time:.2f} s")
|
||||
# logger.info(f"Total iterations: {self.total_iters}")
|
||||
# logger.info(f"Average iterations per second: {iters_per_sec:.2f}")
|
||||
# logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB")
|
||||
# logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB")
|
||||
# if avg_train_time:
|
||||
# logger.info(f"Average training step time: {avg_train_time * 1000:.2f} ms")
|
||||
# if avg_infer_time:
|
||||
# logger.info(f"Average inference step time: {avg_infer_time * 1000:.2f} ms")
|
||||
|
||||
|
||||
class Trainer:
|
||||
"""模型训练器,负责整个训练流程的管理"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler=None,
|
||||
):
|
||||
# 设备和基本参数
|
||||
self.device = args["basic"]["device"]
|
||||
self.config = args # 保存完整的配置参数
|
||||
train_args = args["train"]
|
||||
|
||||
# 模型和训练相关组件
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
|
||||
# 数据加载器
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
|
||||
# 数据处理工具
|
||||
self.scaler = scaler
|
||||
self.args = train_args
|
||||
|
||||
# 统计信息
|
||||
# self.train_per_epoch = len(train_loader)
|
||||
# self.val_per_epoch = len(val_loader) if val_loader else 0
|
||||
|
||||
# 初始化路径、日志和统计
|
||||
self._initialize_paths(train_args)
|
||||
self._initialize_logger(train_args)
|
||||
self._initialize_stats()
|
||||
|
||||
def _initialize_paths(self, args):
|
||||
"""初始化模型保存路径"""
|
||||
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
|
||||
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
|
||||
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
|
||||
|
||||
def _initialize_logger(self, args):
|
||||
"""初始化日志记录器"""
|
||||
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
|
||||
os.makedirs(args["log_dir"], exist_ok=True)
|
||||
self.logger = get_logger(
|
||||
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
|
||||
)
|
||||
self.logger.info(f"Experiment log path in: {args['log_dir']}")
|
||||
|
||||
# def _initialize_stats(self):
|
||||
# """初始化统计信息记录器"""
|
||||
# self.stats = TrainingStats(device=self.device)
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
"""运行一个训练/验证/测试epoch"""
|
||||
# 设置模型模式和是否进行优化
|
||||
if mode == "train":
|
||||
self.model.train()
|
||||
optimizer_step = True
|
||||
else:
|
||||
self.model.eval()
|
||||
optimizer_step = False
|
||||
|
||||
# 初始化变量
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 训练/验证循环
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
progress_bar = tqdm(
|
||||
enumerate(dataloader),
|
||||
total=len(dataloader),
|
||||
desc=f"{mode.capitalize()} Epoch {epoch}"
|
||||
)
|
||||
|
||||
for _, (data, target) in progress_bar:
|
||||
# 记录步骤开始时间
|
||||
start_time = time.time()
|
||||
|
||||
# 将数据和标签移动到指定设备
|
||||
data = data.to(self.device)
|
||||
target = target.to(self.device)
|
||||
|
||||
# 前向传播
|
||||
label = target[..., : self.args["output_dim"]]
|
||||
output = self.model(data)
|
||||
# if output.shape != label.shape:
|
||||
# import sys
|
||||
# print(f"[Wrong]: Output shape: {output.shape}, Label shape: {label.shape}")
|
||||
# sys.exit(1)
|
||||
# else:
|
||||
# import sys
|
||||
# print(f"[Right]: Output shape: {output.shape}, Label shape: {label.shape}")
|
||||
# sys.exit(0)
|
||||
loss = self.loss(output, label)
|
||||
|
||||
# 反归一化
|
||||
d_output = self.scaler.inverse_transform(output)
|
||||
d_label = self.scaler.inverse_transform(label)
|
||||
|
||||
# 反向传播和优化(仅在训练模式)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# 梯度裁剪(如果需要)
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(), self.args["max_grad_norm"]
|
||||
)
|
||||
self.optimizer.step()
|
||||
|
||||
# 反归一化的loss
|
||||
d_loss = self.loss(d_output, d_label)
|
||||
|
||||
# 记录步骤时间和内存使用
|
||||
# step_time = time.time() - start_time
|
||||
# self.stats.record_step_time(step_time, mode)
|
||||
|
||||
# 累积损失和预测结果
|
||||
total_loss += d_loss.item()
|
||||
y_pred.append(d_output.detach().cpu())
|
||||
y_true.append(d_label.detach().cpu())
|
||||
|
||||
# 更新进度条
|
||||
progress_bar.set_postfix(loss=d_loss.item())
|
||||
|
||||
# 合并所有批次的预测结果
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 计算平均损失
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
|
||||
# 计算并记录指标
|
||||
mae, rmse, mape = all_metrics(
|
||||
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
|
||||
)
|
||||
self.logger.info(
|
||||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||||
)
|
||||
|
||||
# 记录内存使用情况
|
||||
# self.stats.record_memory_usage()
|
||||
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.train_loader, "train")
|
||||
|
||||
def val_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||||
|
||||
def test_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.test_loader, "test")
|
||||
|
||||
def train(self):
|
||||
"""执行完整的训练流程"""
|
||||
# 初始化最佳模型和损失记录
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float("inf"), float("inf")
|
||||
not_improved_count = 0
|
||||
|
||||
# 开始训练
|
||||
# self.stats.start_training()
|
||||
self.logger.info("Training process started")
|
||||
|
||||
# 训练循环
|
||||
for epoch in range(1, self.args["epochs"] + 1):
|
||||
# 训练、验证和测试一个epoch
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
|
||||
# 检查梯度爆炸
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning("Gradient explosion detected. Ending...")
|
||||
break
|
||||
|
||||
# 更新最佳验证模型
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
self.logger.info("Best validation model saved!")
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
# 检查早停条件
|
||||
if self._should_early_stop(not_improved_count):
|
||||
break
|
||||
|
||||
# 更新最佳测试模型
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
# 保存最佳模型
|
||||
if not self.args["debug"]:
|
||||
self._save_best_models(best_model, best_test_model)
|
||||
|
||||
# 结束训练并输出统计信息
|
||||
# self.stats.end_training()
|
||||
# self.stats.report(self.logger)
|
||||
|
||||
# 最终评估
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
# 输出模型参数量
|
||||
self._log_model_params()
|
||||
|
||||
def _should_early_stop(self, not_improved_count):
|
||||
"""检查是否满足早停条件"""
|
||||
if (
|
||||
self.args["early_stop"]
|
||||
and not_improved_count == self.args["early_stop_patience"]
|
||||
):
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
|
||||
)
|
||||
return True
|
||||
return False
|
||||
|
||||
def _save_best_models(self, best_model, best_test_model):
|
||||
"""保存最佳模型到文件"""
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(
|
||||
f"Best models saved at {self.best_path} and {self.best_test_path}"
|
||||
)
|
||||
|
||||
def _log_model_params(self):
|
||||
"""输出模型可训练参数数量"""
|
||||
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
|
||||
self.logger.info(f"Trainable params: {total_params}")
|
||||
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
"""对模型进行评估并输出性能指标"""
|
||||
# 确定设备信息
|
||||
device = None
|
||||
output_dim = None
|
||||
|
||||
# 处理不同的参数格式
|
||||
if isinstance(args, dict):
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
device = args["basic"]["device"]
|
||||
output_dim = args["train"]["output_dim"]
|
||||
else:
|
||||
# 只有train_args情况
|
||||
# 从模型获取设备
|
||||
device = next(model.parameters()).device
|
||||
output_dim = args["output_dim"]
|
||||
else:
|
||||
raise ValueError(f"Unsupported args type: {type(args)}")
|
||||
|
||||
# 加载模型检查点(如果提供了路径)
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.to(device)
|
||||
|
||||
# 设置为评估模式
|
||||
model.eval()
|
||||
|
||||
# 收集预测和真实标签
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 不计算梯度的情况下进行预测
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
# 将数据和标签移动到指定设备
|
||||
data = data.to(device)
|
||||
target = target.to(device)
|
||||
|
||||
label = target[..., : output_dim]
|
||||
output = model(data)
|
||||
y_pred.append(output.detach().cpu())
|
||||
y_true.append(label.detach().cpu())
|
||||
|
||||
|
||||
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
|
||||
|
||||
# 获取metrics参数
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
mae_thresh = args["train"]["mae_thresh"]
|
||||
mape_thresh = args["train"]["mape_thresh"]
|
||||
else:
|
||||
# 只有train_args情况
|
||||
mae_thresh = args["mae_thresh"]
|
||||
mape_thresh = args["mape_thresh"]
|
||||
|
||||
# 计算并记录每个时间步的指标
|
||||
for t in range(d_y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(
|
||||
d_y_pred[:, t, ...],
|
||||
d_y_true[:, t, ...],
|
||||
mae_thresh,
|
||||
mape_thresh,
|
||||
)
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
# 计算并记录平均指标
|
||||
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
|
||||
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
@staticmethod
|
||||
def _compute_sampling_threshold(global_step, k):
|
||||
return k / (k + math.exp(global_step / k))
|
||||
|
|
@ -1,229 +0,0 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
from tqdm import tqdm
|
||||
|
||||
import torch
|
||||
from utils.logger import get_logger
|
||||
from utils.loss_function import all_metrics
|
||||
from utils.training_stats import TrainingStats
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler=None,
|
||||
):
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
self.scaler = scaler
|
||||
self.args = args
|
||||
self.lr_scheduler = lr_scheduler
|
||||
self.train_per_epoch = len(train_loader)
|
||||
self.val_per_epoch = len(val_loader) if val_loader else 0
|
||||
|
||||
# Paths for saving models and logs
|
||||
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
|
||||
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
|
||||
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
|
||||
|
||||
# Initialize logger
|
||||
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
|
||||
os.makedirs(args["log_dir"], exist_ok=True)
|
||||
self.logger = get_logger(
|
||||
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
|
||||
)
|
||||
self.logger.info(f"Experiment log path in: {args['log_dir']}")
|
||||
# Stats tracker
|
||||
self.stats = TrainingStats(device=args["device"])
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
if mode == "train":
|
||||
self.model.train()
|
||||
optimizer_step = True
|
||||
else:
|
||||
self.model.eval()
|
||||
optimizer_step = False
|
||||
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
with tqdm(
|
||||
total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}"
|
||||
) as pbar:
|
||||
for batch_idx, (data, target) in enumerate(dataloader):
|
||||
start_time = time.time()
|
||||
label = target[..., : self.args["output_dim"]]
|
||||
output = self.model(data).to(self.args["device"])
|
||||
|
||||
if self.args["real_value"]:
|
||||
output = self.scaler.inverse_transform(output)
|
||||
|
||||
loss = self.loss(output, label)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(), self.args["max_grad_norm"]
|
||||
)
|
||||
self.optimizer.step()
|
||||
|
||||
step_time = time.time() - start_time
|
||||
self.stats.record_step_time(step_time, mode)
|
||||
total_loss += loss.item()
|
||||
|
||||
if mode == "train" and (batch_idx + 1) % self.args["log_step"] == 0:
|
||||
self.logger.info(
|
||||
f"Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}"
|
||||
)
|
||||
|
||||
# 更新 tqdm 的进度
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.item())
|
||||
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
self.logger.info(
|
||||
f"{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s"
|
||||
)
|
||||
# 记录内存
|
||||
self.stats.record_memory_usage()
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.train_loader, "train")
|
||||
|
||||
def val_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||||
|
||||
def test_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.test_loader, "test")
|
||||
|
||||
def train(self):
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float("inf"), float("inf")
|
||||
not_improved_count = 0
|
||||
|
||||
self.stats.start_training()
|
||||
self.logger.info("Training process started")
|
||||
for epoch in range(1, self.args["epochs"] + 1):
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning("Gradient explosion detected. Ending...")
|
||||
break
|
||||
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
self.logger.info("Best validation model saved!")
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
if (
|
||||
self.args["early_stop"]
|
||||
and not_improved_count == self.args["early_stop_patience"]
|
||||
):
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
|
||||
)
|
||||
break
|
||||
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
if not self.args["debug"]:
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(
|
||||
f"Best models saved at {self.best_path} and {self.best_test_path}"
|
||||
)
|
||||
|
||||
# 输出统计与参数
|
||||
self.stats.end_training()
|
||||
self.stats.report(self.logger)
|
||||
try:
|
||||
total_params = sum(
|
||||
p.numel() for p in self.model.parameters() if p.requires_grad
|
||||
)
|
||||
self.logger.info(f"Trainable params: {total_params}")
|
||||
except Exception:
|
||||
pass
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.to(args["device"])
|
||||
|
||||
model.eval()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
label = target[..., : args["output_dim"]]
|
||||
output = model(data)
|
||||
y_pred.append(output)
|
||||
y_true.append(label)
|
||||
|
||||
if args["real_value"]:
|
||||
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
else:
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(
|
||||
y_pred[:, t, ...],
|
||||
y_true[:, t, ...],
|
||||
args["mae_thresh"],
|
||||
args["mape_thresh"],
|
||||
)
|
||||
logger.info(
|
||||
f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
|
||||
)
|
||||
|
||||
mae, rmse, mape = all_metrics(
|
||||
y_pred, y_true, args["mae_thresh"], args["mape_thresh"]
|
||||
)
|
||||
logger.info(
|
||||
f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _compute_sampling_threshold(global_step, k):
|
||||
return k / (k + math.exp(global_step / k))
|
||||
|
|
@ -9,9 +9,9 @@ import os
|
|||
import yaml
|
||||
|
||||
|
||||
def init_model(args):
|
||||
device = args["device"]
|
||||
model = model_selector(args).to(device)
|
||||
def init_model(config):
|
||||
device = config["basic"]["device"]
|
||||
model = model_selector(config).to(device)
|
||||
for p in model.parameters():
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_uniform_(p)
|
||||
|
|
|
|||
Loading…
Reference in New Issue