REPST #3

Merged
czzhangheng merged 42 commits from REPST into main 2025-12-20 16:03:22 +08:00
10 changed files with 550 additions and 6093 deletions
Showing only changes of commit d8f4cc5825 - Show all commits

View File

@ -15,39 +15,5 @@ def parse_args():
config = yaml.safe_load(file)
else:
raise ValueError("Configuration file path must be provided using --config")
# Update configuration with command-line arguments
# Merge 'basic' configuration into the root dictionary
# config.update(config.get('basic', {}))
# Add adaptive configuration based on external commands
if "data" in config and "type" in config["data"]:
config["data"]["type"] = config["basic"].get("dataset", config["data"]["type"])
if "model" in config and "type" in config["model"]:
config["model"]["type"] = config["basic"].get("model", config["model"]["type"])
if "model" in config and "rnn_units" in config["model"]:
config["model"]["rnn_units"] = config["basic"].get(
"rnn", config["model"]["rnn_units"]
)
if "model" in config and "embed_dim" in config["model"]:
config["model"]["embed_dim"] = config["basic"].get(
"emb", config["model"]["embed_dim"]
)
if "data" in config and "sample" in config["data"]:
config["data"]["sample"] = config["basic"].get(
"sample", config["data"]["sample"]
)
if "train" in config and "device" in config["train"]:
config["train"]["device"] = config["basic"].get(
"device", config["train"]["device"]
)
if "train" in config and "debug" in config["train"]:
config["train"]["debug"] = config["basic"].get(
"debug", config["train"]["debug"]
)
if "cuda" in config:
config["cuda"] = config["basic"].get("cuda", config["cuda"])
if "mode" in config:
config["mode"] = config["basic"].get("mode", config["mode"])
return config

View File

@ -1,134 +0,0 @@
import os
import re
# 配置路径
CONFIG_DIR = "/user/czzhangheng/code/TrafficWheel/config"
LAUNCH_FILE = "/user/czzhangheng/code/TrafficWheel/.vscode/launch.json"
# 遍历所有yaml文件
def find_all_yaml_files(directory):
yaml_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".yaml") and not file.startswith("BJTaxi"):
yaml_files.append(os.path.join(root, file))
return yaml_files
# 生成launch配置字符串
def generate_launch_config_string(yaml_files):
config_strings = []
for file_path in yaml_files:
# 提取模型名和数据集名
relative_path = os.path.relpath(file_path, CONFIG_DIR)
model_name = relative_path.split(os.sep)[0]
dataset_name = os.path.splitext(os.path.basename(file_path))[0]
# 处理v2版本
if "v2_" in dataset_name:
model_display_name = f"{model_name}_v2"
dataset_display_name = dataset_name.replace("v2_", "")
else:
model_display_name = model_name
dataset_display_name = dataset_name
# 生成配置字符串
config_string = f'''
{{
"name": "{model_display_name}: {dataset_display_name}",
"type": "debugpy",
"request": "launch",
"program": "run.py",
"console": "integratedTerminal",
"args": "--config ./config/{model_name}/{os.path.basename(file_path)}"
}}'''
config_strings.append(config_string)
return ",".join(config_strings)
# 读取现有的launch.json文件提取配置名称
def get_existing_config_names():
with open(LAUNCH_FILE, 'r') as f:
content = f.read()
# 提取所有配置名称
name_pattern = re.compile(r'"name"\s*:\s*"([^"]+)"')
matches = name_pattern.findall(content)
return set(matches)
# 生成新的配置,过滤掉已存在的
def generate_new_configs(yaml_files, existing_names):
new_configs = []
for file_path in yaml_files:
# 提取模型名和数据集名
relative_path = os.path.relpath(file_path, CONFIG_DIR)
model_name = relative_path.split(os.sep)[0]
dataset_name = os.path.splitext(os.path.basename(file_path))[0]
# 处理v2版本
if "v2_" in dataset_name:
model_display_name = f"{model_name}_v2"
dataset_display_name = dataset_name.replace("v2_", "")
else:
model_display_name = model_name
dataset_display_name = dataset_name
# 生成配置名称
config_name = f"{model_display_name}: {dataset_display_name}"
# 如果配置不存在,则添加
if config_name not in existing_names:
new_configs.append(file_path)
return new_configs
# 更新launch.json文件
def update_launch_json(new_configs_string):
with open(LAUNCH_FILE, 'r') as f:
content = f.read()
# 找到configurations数组的结束位置
configs_end_match = re.search(r'\s*\]\s*\}', content)
if not configs_end_match:
return False
# 插入新的配置
insert_pos = configs_end_match.start()
new_content = content[:insert_pos] + new_configs_string + content[insert_pos:]
# 保存文件
with open(LAUNCH_FILE, 'w') as f:
f.write(new_content)
return True
# 主函数
def main():
# 查找所有yaml文件
yaml_files = find_all_yaml_files(CONFIG_DIR)
# 获取现有配置名称
existing_names = get_existing_config_names()
# 生成新的配置,过滤掉已存在的
new_config_files = generate_new_configs(yaml_files, existing_names)
if not new_config_files:
print("No new configurations to add")
return
# 生成新的配置字符串
new_configs_string = generate_launch_config_string(new_config_files)
# 更新launch.json文件
if update_launch_json(new_configs_string):
print(f"Added {len(new_config_files)} new launch configurations")
print(f"Total configurations: {len(existing_names) + len(new_config_files)}")
else:
print("Failed to update launch.json")
if __name__ == "__main__":
main()

View File

@ -1,4 +0,0 @@
[mypy]
explicit_package_bases = True
ignore_missing_imports = True
no_site_packages = True

View File

@ -1,95 +0,0 @@
#!/bin/bash
# 设置默认模型名和数据集列表
MODEL_NAME="STAEFormer"
DATASETS=(
"METR-LA"
"PEMS-BAY"
"NYCBike-InFlow"
"NYCBike-OutFlow"
"AirQuality"
"SolarEnergy"
)
# 初始化统计变量
success_count=0
failure_count=0
missing_count=0
total_count=0
success_datasets=()
failure_datasets=()
missing_datasets=()
# 检查是否有参数传入来覆盖默认值
if [ $# -gt 0 ]; then
MODEL_NAME=$1
# 如果传入了更多参数,使用它们作为数据集列表
if [ $# -gt 1 ]; then
DATASETS=(${@:2})
fi
fi
echo "使用模型: $MODEL_NAME"
echo "数据集列表: ${DATASETS[*]}"
echo "开始测试..."
echo ""
# 循环测试每个数据集
for dataset in "${DATASETS[@]}"; do
total_count=$((total_count + 1))
# 构建配置文件路径
CONFIG_PATH="config/${MODEL_NAME}/${dataset}.yaml"
echo "测试数据集: $dataset"
echo "使用配置文件: $CONFIG_PATH"
# 检查配置文件是否存在
if [ ! -f "$CONFIG_PATH" ]; then
echo "错误: 配置文件 $CONFIG_PATH 不存在!"
missing_count=$((missing_count + 1))
missing_datasets+=("$dataset")
echo "----------------------------------------"
continue
fi
# 执行测试命令,同时捕获输出并显示在控制台上
echo "执行: python run.py --config $CONFIG_PATH"
output=$(python run.py --config "$CONFIG_PATH" 2>&1 | tee /dev/tty)
# 如果没有找到明确的标记,回退到检查退出码
if [ $? -eq 0 ]; then
echo "数据集 $dataset 测试成功! (基于退出码)"
success_count=$((success_count + 1))
success_datasets+=("$dataset")
else
echo "数据集 $dataset 测试失败! (基于退出码)"
failure_count=$((failure_count + 1))
failure_datasets+=("$dataset")
fi
echo "----------------------------------------"
done
# 输出总结
echo "======================================="
echo "测试总结"
echo "======================================="
echo "总数据集数量: $total_count"
echo "成功数量: $success_count"
echo "失败数量: $failure_count"
echo "缺失配置文件数量: $missing_count"
if [ ${#success_datasets[@]} -gt 0 ]; then
echo "成功的数据集: ${success_datasets[*]}"
fi
if [ ${#failure_datasets[@]} -gt 0 ]; then
echo "失败的数据集: ${failure_datasets[*]}"
fi
if [ ${#missing_datasets[@]} -gt 0 ]; then
echo "缺失配置的数据集: ${missing_datasets[*]}"
fi
echo "======================================="
echo "所有测试完成!"

File diff suppressed because it is too large Load Diff

63
train.py Normal file
View File

@ -0,0 +1,63 @@
import yaml
import torch
import utils.initializer as init
from dataloader.loader_selector import get_dataloader
from trainer.trainer_selector import select_trainer
def run(config):
init.init_seed(config["basic"]["seed"])
model = init.init_model(config)
train_loader, val_loader, test_loader, scaler, *extra_data = get_dataloader(
config, normalizer=config["data"]["normalizer"], single=False
)
loss = init.init_loss(config, scaler)
optimizer, lr_scheduler = init.init_optimizer(model, config["train"])
init.create_logs(config)
trainer = select_trainer(
model,
loss, optimizer,
train_loader, val_loader, test_loader, scaler,
config,
lr_scheduler, extra_data,
)
# 开始训练
match config["basic"]["mode"]:
case "train":
trainer.train()
case "test":
model.load_state_dict(
torch.load(
f"./pre-trained/{config['basic']['model']}/{config['basic']['dataset']}.pth",
map_location=config["basic"]["device"],
weights_only=True,
)
)
trainer.test(
model.to(config["basic"]["device"]),
trainer.args, test_loader, scaler,
trainer.logger,
)
case _:
raise ValueError(f"Unsupported mode: {config['basic']['mode']}")
if __name__ == "__main__":
# 指定模型
model_list = ["HI"]
# 指定数据集
dataset_list = ["AirQuality", "SolarEnergy", "PEMS-BAY", "METR-LA", "BJTaxi-Inflow", "BJTaxi-Outflow", "NYCBike-Inflow", "NYCBike-Outflow"]
device = "cuda:0" # 指定设备
seed = 2023 # 随机种子
for model in model_list:
for dataset in dataset_list:
config_path = f"./config/{model}/{dataset}.yaml"
with open(config_path, "r") as file:
config = yaml.safe_load(file)
config["basic"]["device"] = device
config["basic"]["seed"] = seed
print(f"\nRunning {model} on {dataset} with seed {seed} on {device}")
print(f"config: {config}")
run(config)

View File

@ -8,125 +8,31 @@ from utils.logger import get_logger
from utils.loss_function import all_metrics
from tqdm import tqdm
class TrainingStats:
"""记录训练过程中的统计信息"""
def __init__(self, device):
self.device = device
self.reset()
def reset(self):
"""重置所有统计数据"""
self.gpu_mem_usage_list = []
self.cpu_mem_usage_list = []
self.train_time_list = []
self.infer_time_list = []
self.total_iters = 0
self.start_time = None
self.end_time = None
def start_training(self):
"""记录训练开始时间"""
self.start_time = time.time()
def end_training(self):
"""记录训练结束时间"""
self.end_time = time.time()
def record_step_time(self, duration, mode):
"""记录单步耗时和总迭代次数"""
if mode == "train":
self.train_time_list.append(duration)
else:
self.infer_time_list.append(duration)
self.total_iters += 1
def record_memory_usage(self):
"""记录当前 GPU 和 CPU 内存占用"""
process = psutil.Process(os.getpid())
cpu_mem = process.memory_info().rss / (1024**2)
if torch.cuda.is_available():
gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024**2)
torch.cuda.reset_peak_memory_stats(device=self.device)
else:
gpu_mem = 0.0
self.cpu_mem_usage_list.append(cpu_mem)
self.gpu_mem_usage_list.append(gpu_mem)
def _calculate_average(self, values_list):
"""安全计算平均值,避免除零错误"""
return sum(values_list) / len(values_list) if values_list else 0
def report(self, logger):
"""在训练结束时输出汇总统计"""
if not self.start_time or not self.end_time:
logger.warning("TrainingStats: start/end time not recorded properly.")
return
total_time = self.end_time - self.start_time
avg_gpu_mem = self._calculate_average(self.gpu_mem_usage_list)
avg_cpu_mem = self._calculate_average(self.cpu_mem_usage_list)
avg_train_time = self._calculate_average(self.train_time_list)
avg_infer_time = self._calculate_average(self.infer_time_list)
iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
logger.info("===== Training Summary =====")
logger.info(f"Total training time: {total_time:.2f} s")
logger.info(f"Total iterations: {self.total_iters}")
logger.info(f"Average iterations per second: {iters_per_sec:.2f}")
logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB")
logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB")
if avg_train_time:
logger.info(f"Average training step time: {avg_train_time * 1000:.2f} ms")
if avg_infer_time:
logger.info(f"Average inference step time: {avg_infer_time * 1000:.2f} ms")
class Trainer:
"""模型训练器,负责整个训练流程的管理"""
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
def __init__(self, model, loss, optimizer,
train_loader, val_loader, test_loader, scaler,
args, lr_scheduler=None,):
# 设备和基本参数
self.config = args
self.device = args["basic"]["device"]
train_args = args["train"]
# 模型和训练相关组件
self.model = model
self.loss = loss
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
# 数据加载器
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
# 数据处理工具
self.scaler = scaler
self.args = train_args
# 统计信息
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
# 初始化路径、日志和统计
self._initialize_paths(train_args)
self._initialize_logger(train_args)
self._initialize_stats()
def _initialize_paths(self, args):
"""初始化模型保存路径"""
@ -138,24 +44,14 @@ class Trainer:
"""初始化日志记录器"""
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
)
self.logger = get_logger(args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"])
self.logger.info(f"Experiment log path in: {args['log_dir']}")
def _initialize_stats(self):
"""初始化统计信息记录器"""
self.stats = TrainingStats(device=self.device)
def _run_epoch(self, epoch, dataloader, mode):
"""运行一个训练/验证/测试epoch"""
# 设置模型模式和是否进行优化
if mode == "train":
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
if mode == "train": self.model.train(); optimizer_step = True
else: self.model.eval(); optimizer_step = False
# 初始化变量
total_loss = 0
@ -169,73 +65,42 @@ class Trainer:
total=len(dataloader),
desc=f"{mode.capitalize()} Epoch {epoch}"
)
for _, (data, target) in progress_bar:
# 记录步骤开始时间
start_time = time.time()
# 前向传播
# 转移数据
data = data.to(self.device)
target = target.to(self.device)
label = target[..., : self.args["output_dim"]]
output = self.model(data).to(self.device)
# if output.shape != label.shape:
# import sys
# print(f"[Wrong]: Output shape: {output.shape}, Label shape: {label.shape}")
# sys.exit(1)
# else:
# import sys
# print(f"[Right]: Output shape: {output.shape}, Label shape: {label.shape}")
# sys.exit(0)
# 计算loss和反归一化loss
output = self.model(data)
loss = self.loss(output, label)
# 反归一化
d_output = self.scaler.inverse_transform(output)
d_label = self.scaler.inverse_transform(label)
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪(如果需要)
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
# 反归一化的loss
d_loss = self.loss(d_output, d_label)
# 记录步骤时间和内存使用
step_time = time.time() - start_time
self.stats.record_step_time(step_time, mode)
# 累积损失和预测结果
total_loss += d_loss.item()
y_pred.append(d_output.detach().cpu())
y_true.append(d_label.detach().cpu())
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪(如果需要)
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
self.optimizer.step()
# 更新进度条
progress_bar.set_postfix(loss=d_loss.item())
# 合并所有批次的预测结果
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算平均损失
# 计算损失并记录指标
avg_loss = total_loss / len(dataloader)
# 计算并记录指标
mae, rmse, mape = all_metrics(
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
)
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
self.logger.info(
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
)
# 记录内存使用情况
self.stats.record_memory_usage()
return avg_loss
def train_epoch(self, epoch):
@ -248,28 +113,22 @@ class Trainer:
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
"""执行完整的训练流程"""
# 初始化最佳模型和损失记录
# 初始化记录
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
# 开始训练
self.stats.start_training()
self.logger.info("Training process started")
# 训练循环
for epoch in range(1, self.args["epochs"] + 1):
# 训练、验证和测试一个epoch
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
# 检查梯度爆炸
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
# 更新最佳验证模型
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
@ -278,29 +137,18 @@ class Trainer:
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
# 检查早停条件
# 早停
if self._should_early_stop(not_improved_count):
break
# 更新最佳测试模型
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
# 保存最佳模型
if not self.args["debug"]:
self._save_best_models(best_model, best_test_model)
# 结束训练并输出统计信息
self.stats.end_training()
self.stats.report(self.logger)
# 最终评估
self._finalize_training(best_model, best_test_model)
# 输出模型参数量
self._log_model_params()
def _should_early_stop(self, not_improved_count):
"""检查是否满足早停条件"""
@ -331,20 +179,35 @@ class Trainer:
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
"""对模型进行评估并输出性能指标"""
# 确定设备信息
device = None
output_dim = None
# 处理不同的参数格式
if isinstance(args, dict):
if "basic" in args:
# 完整配置情况
device = args["basic"]["device"]
output_dim = args["train"]["output_dim"]
else:
# 只有train_args情况从模型获取设备
device = next(model.parameters()).device
output_dim = args["output_dim"]
else:
raise ValueError(f"Unsupported args type: {type(args)}")
# 加载模型检查点(如果提供了路径)
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(args["basic"]["device"])
model.to(device)
# 设置为评估模式
model.eval()
@ -355,27 +218,40 @@ class Trainer:
# 不计算梯度的情况下进行预测
with torch.no_grad():
for data, target in data_loader:
label = target[..., : args["output_dim"]]
# 将数据和标签移动到指定设备
data = data.to(device)
target = target.to(device)
label = target[..., : output_dim]
output = model(data)
y_pred.append(output.detach().cpu())
y_true.append(label.detach().cpu())
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
# 获取metrics参数
if "basic" in args:
# 完整配置情况
mae_thresh = args["train"]["mae_thresh"]
mape_thresh = args["train"]["mape_thresh"]
else:
# 只有train_args情况
mae_thresh = args["mae_thresh"]
mape_thresh = args["mape_thresh"]
# 计算并记录每个时间步的指标
for t in range(d_y_true.shape[1]):
mae, rmse, mape = all_metrics(
d_y_pred[:, t, ...],
d_y_true[:, t, ...],
args["mae_thresh"],
args["mape_thresh"],
mae_thresh,
mape_thresh,
)
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
# 计算并记录平均指标
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, args["mae_thresh"], args["mape_thresh"])
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
@staticmethod

420
trainer/Trainer_bk.py Executable file
View File

@ -0,0 +1,420 @@
import math
import os
import time
import copy
import psutil
import torch
from utils.logger import get_logger
from utils.loss_function import all_metrics
from tqdm import tqdm
# class TrainingStats:
# """记录训练过程中的统计信息"""
# def __init__(self, device):
# self.device = device
# self.reset()
# def reset(self):
# """重置所有统计数据"""
# self.gpu_mem_usage_list = []
# self.cpu_mem_usage_list = []
# self.train_time_list = []
# self.infer_time_list = []
# self.total_iters = 0
# self.start_time = None
# self.end_time = None
# def start_training(self):
# """记录训练开始时间"""
# self.start_time = time.time()
# def end_training(self):
# """记录训练结束时间"""
# self.end_time = time.time()
# def record_step_time(self, duration, mode):
# """记录单步耗时和总迭代次数"""
# if mode == "train":
# self.train_time_list.append(duration)
# else:
# self.infer_time_list.append(duration)
# self.total_iters += 1
# def record_memory_usage(self):
# """记录当前 GPU 和 CPU 内存占用"""
# process = psutil.Process(os.getpid())
# cpu_mem = process.memory_info().rss / (1024**2)
# if torch.cuda.is_available():
# gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024**2)
# torch.cuda.reset_peak_memory_stats(device=self.device)
# else:
# gpu_mem = 0.0
# self.cpu_mem_usage_list.append(cpu_mem)
# self.gpu_mem_usage_list.append(gpu_mem)
# def _calculate_average(self, values_list):
# """安全计算平均值,避免除零错误"""
# return sum(values_list) / len(values_list) if values_list else 0
# def report(self, logger):
# """在训练结束时输出汇总统计"""
# if not self.start_time or not self.end_time:
# logger.warning("TrainingStats: start/end time not recorded properly.")
# return
# total_time = self.end_time - self.start_time
# avg_gpu_mem = self._calculate_average(self.gpu_mem_usage_list)
# avg_cpu_mem = self._calculate_average(self.cpu_mem_usage_list)
# avg_train_time = self._calculate_average(self.train_time_list)
# avg_infer_time = self._calculate_average(self.infer_time_list)
# iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
# logger.info("===== Training Summary =====")
# logger.info(f"Total training time: {total_time:.2f} s")
# logger.info(f"Total iterations: {self.total_iters}")
# logger.info(f"Average iterations per second: {iters_per_sec:.2f}")
# logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB")
# logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB")
# if avg_train_time:
# logger.info(f"Average training step time: {avg_train_time * 1000:.2f} ms")
# if avg_infer_time:
# logger.info(f"Average inference step time: {avg_infer_time * 1000:.2f} ms")
class Trainer:
"""模型训练器,负责整个训练流程的管理"""
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
# 设备和基本参数
self.device = args["basic"]["device"]
self.config = args # 保存完整的配置参数
train_args = args["train"]
# 模型和训练相关组件
self.model = model
self.loss = loss
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
# 数据加载器
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
# 数据处理工具
self.scaler = scaler
self.args = train_args
# 统计信息
# self.train_per_epoch = len(train_loader)
# self.val_per_epoch = len(val_loader) if val_loader else 0
# 初始化路径、日志和统计
self._initialize_paths(train_args)
self._initialize_logger(train_args)
self._initialize_stats()
def _initialize_paths(self, args):
"""初始化模型保存路径"""
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
def _initialize_logger(self, args):
"""初始化日志记录器"""
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
)
self.logger.info(f"Experiment log path in: {args['log_dir']}")
# def _initialize_stats(self):
# """初始化统计信息记录器"""
# self.stats = TrainingStats(device=self.device)
def _run_epoch(self, epoch, dataloader, mode):
"""运行一个训练/验证/测试epoch"""
# 设置模型模式和是否进行优化
if mode == "train":
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
# 初始化变量
total_loss = 0
epoch_time = time.time()
y_pred, y_true = [], []
# 训练/验证循环
with torch.set_grad_enabled(optimizer_step):
progress_bar = tqdm(
enumerate(dataloader),
total=len(dataloader),
desc=f"{mode.capitalize()} Epoch {epoch}"
)
for _, (data, target) in progress_bar:
# 记录步骤开始时间
start_time = time.time()
# 将数据和标签移动到指定设备
data = data.to(self.device)
target = target.to(self.device)
# 前向传播
label = target[..., : self.args["output_dim"]]
output = self.model(data)
# if output.shape != label.shape:
# import sys
# print(f"[Wrong]: Output shape: {output.shape}, Label shape: {label.shape}")
# sys.exit(1)
# else:
# import sys
# print(f"[Right]: Output shape: {output.shape}, Label shape: {label.shape}")
# sys.exit(0)
loss = self.loss(output, label)
# 反归一化
d_output = self.scaler.inverse_transform(output)
d_label = self.scaler.inverse_transform(label)
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪(如果需要)
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
# 反归一化的loss
d_loss = self.loss(d_output, d_label)
# 记录步骤时间和内存使用
# step_time = time.time() - start_time
# self.stats.record_step_time(step_time, mode)
# 累积损失和预测结果
total_loss += d_loss.item()
y_pred.append(d_output.detach().cpu())
y_true.append(d_label.detach().cpu())
# 更新进度条
progress_bar.set_postfix(loss=d_loss.item())
# 合并所有批次的预测结果
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算平均损失
avg_loss = total_loss / len(dataloader)
# 计算并记录指标
mae, rmse, mape = all_metrics(
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
)
self.logger.info(
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
)
# 记录内存使用情况
# self.stats.record_memory_usage()
return avg_loss
def train_epoch(self, epoch):
return self._run_epoch(epoch, self.train_loader, "train")
def val_epoch(self, epoch):
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
def test_epoch(self, epoch):
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
"""执行完整的训练流程"""
# 初始化最佳模型和损失记录
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
# 开始训练
# self.stats.start_training()
self.logger.info("Training process started")
# 训练循环
for epoch in range(1, self.args["epochs"] + 1):
# 训练、验证和测试一个epoch
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
# 检查梯度爆炸
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
# 更新最佳验证模型
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_model = copy.deepcopy(self.model.state_dict())
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
# 检查早停条件
if self._should_early_stop(not_improved_count):
break
# 更新最佳测试模型
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
# 保存最佳模型
if not self.args["debug"]:
self._save_best_models(best_model, best_test_model)
# 结束训练并输出统计信息
# self.stats.end_training()
# self.stats.report(self.logger)
# 最终评估
self._finalize_training(best_model, best_test_model)
# 输出模型参数量
self._log_model_params()
def _should_early_stop(self, not_improved_count):
"""检查是否满足早停条件"""
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
return True
return False
def _save_best_models(self, best_model, best_test_model):
"""保存最佳模型到文件"""
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
def _log_model_params(self):
"""输出模型可训练参数数量"""
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
self.logger.info(f"Trainable params: {total_params}")
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
"""对模型进行评估并输出性能指标"""
# 确定设备信息
device = None
output_dim = None
# 处理不同的参数格式
if isinstance(args, dict):
if "basic" in args:
# 完整配置情况
device = args["basic"]["device"]
output_dim = args["train"]["output_dim"]
else:
# 只有train_args情况
# 从模型获取设备
device = next(model.parameters()).device
output_dim = args["output_dim"]
else:
raise ValueError(f"Unsupported args type: {type(args)}")
# 加载模型检查点(如果提供了路径)
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(device)
# 设置为评估模式
model.eval()
# 收集预测和真实标签
y_pred, y_true = [], []
# 不计算梯度的情况下进行预测
with torch.no_grad():
for data, target in data_loader:
# 将数据和标签移动到指定设备
data = data.to(device)
target = target.to(device)
label = target[..., : output_dim]
output = model(data)
y_pred.append(output.detach().cpu())
y_true.append(label.detach().cpu())
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
# 获取metrics参数
if "basic" in args:
# 完整配置情况
mae_thresh = args["train"]["mae_thresh"]
mape_thresh = args["train"]["mape_thresh"]
else:
# 只有train_args情况
mae_thresh = args["mae_thresh"]
mape_thresh = args["mape_thresh"]
# 计算并记录每个时间步的指标
for t in range(d_y_true.shape[1]):
mae, rmse, mape = all_metrics(
d_y_pred[:, t, ...],
d_y_true[:, t, ...],
mae_thresh,
mape_thresh,
)
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
# 计算并记录平均指标
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
@staticmethod
def _compute_sampling_threshold(global_step, k):
return k / (k + math.exp(global_step / k))

View File

@ -1,229 +0,0 @@
import math
import os
import time
import copy
from tqdm import tqdm
import torch
from utils.logger import get_logger
from utils.loss_function import all_metrics
from utils.training_stats import TrainingStats
class Trainer:
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
self.model = model
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
# Paths for saving models and logs
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
# Initialize logger
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
)
self.logger.info(f"Experiment log path in: {args['log_dir']}")
# Stats tracker
self.stats = TrainingStats(device=args["device"])
def _run_epoch(self, epoch, dataloader, mode):
if mode == "train":
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
total_loss = 0
epoch_time = time.time()
with torch.set_grad_enabled(optimizer_step):
with tqdm(
total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}"
) as pbar:
for batch_idx, (data, target) in enumerate(dataloader):
start_time = time.time()
label = target[..., : self.args["output_dim"]]
output = self.model(data).to(self.args["device"])
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output, label)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, mode)
total_loss += loss.item()
if mode == "train" and (batch_idx + 1) % self.args["log_step"] == 0:
self.logger.info(
f"Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}"
)
# 更新 tqdm 的进度
pbar.update(1)
pbar.set_postfix(loss=loss.item())
avg_loss = total_loss / len(dataloader)
self.logger.info(
f"{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s"
)
# 记录内存
self.stats.record_memory_usage()
return avg_loss
def train_epoch(self, epoch):
return self._run_epoch(epoch, self.train_loader, "train")
def val_epoch(self, epoch):
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
def test_epoch(self, epoch):
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
self.stats.start_training()
self.logger.info("Training process started")
for epoch in range(1, self.args["epochs"] + 1):
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_model = copy.deepcopy(self.model.state_dict())
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
break
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
if not self.args["debug"]:
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
# 输出统计与参数
self.stats.end_training()
self.stats.report(self.logger)
try:
total_params = sum(
p.numel() for p in self.model.parameters() if p.requires_grad
)
self.logger.info(f"Trainable params: {total_params}")
except Exception:
pass
self._finalize_training(best_model, best_test_model)
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(args["device"])
model.eval()
y_pred, y_true = [], []
with torch.no_grad():
for data, target in data_loader:
label = target[..., : args["output_dim"]]
output = model(data)
y_pred.append(output)
y_true.append(label)
if args["real_value"]:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
else:
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 你在这里需要把y_pred和y_true保存下来
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
for t in range(y_true.shape[1]):
mae, rmse, mape = all_metrics(
y_pred[:, t, ...],
y_true[:, t, ...],
args["mae_thresh"],
args["mape_thresh"],
)
logger.info(
f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
)
mae, rmse, mape = all_metrics(
y_pred, y_true, args["mae_thresh"], args["mape_thresh"]
)
logger.info(
f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
)
@staticmethod
def _compute_sampling_threshold(global_step, k):
return k / (k + math.exp(global_step / k))

View File

@ -9,9 +9,9 @@ import os
import yaml
def init_model(args):
device = args["device"]
model = model_selector(args).to(device)
def init_model(config):
device = config["basic"]["device"]
model = model_selector(config).to(device)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)