import torch import torch.nn as nn import torch.nn.functional as F """ KAN网络 """ class KANLinear(nn.Module): """ A simple Kolmogorov–Arnold Network linear layer. y_k = sum_{q=1}^Q alpha_{kq} * phi_q( sum_{i=1}^I beta_{qi} * x_i ) """ def __init__(self, in_features, out_features, hidden_funcs=10): super().__init__() self.in_features = in_features self.out_features = out_features self.num_hidden = hidden_funcs # mixing weights from input to Q hidden functions self.beta = nn.Parameter(torch.randn(hidden_funcs, in_features)) # one univariate phi function per hidden channel self.phi = nn.ModuleList( [nn.Sequential(nn.Linear(1, 1), nn.ReLU()) for _ in range(hidden_funcs)] ) # mixing weights from hidden functions to outputs self.alpha = nn.Parameter(torch.randn(out_features, hidden_funcs)) def forward(self, x): # x: (..., in_features) # compute univariate projections for each hidden func: u_q = sum_i beta_{qi} * x_i u = torch.einsum("...i,qi->...q", x, self.beta) # (..., Q) # apply phi elementwise u_phi = torch.stack( [ self.phi[q](u[..., q].unsqueeze(-1)).squeeze(-1) for q in range(self.num_hidden) ], dim=-1, ) # (..., Q) # mix to out_features y = torch.einsum("...q,kq->...k", u_phi, self.alpha) # (..., out_features) return y class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): # (N, D) @ (D, N) -> (N, N) adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim, kan_hidden=8): super().__init__() self.theta = KANLinear(input_dim, output_dim, hidden_funcs=kan_hidden) self.residual = input_dim == output_dim if not self.residual: self.res_proj = KANLinear(input_dim, output_dim, hidden_funcs=kan_hidden) def forward(self, x, adj): # x: (B, N, C) / adj: (N, N) res = x x = torch.matmul(adj, x) # apply KAN-based linear mapping B, N, C = x.shape x = x.view(B * N, C) x = self.theta(x) x = x.view(B, N, -1) if self.residual: x = x + res else: x = x + self.res_proj(res.view(B * N, C)).view(B, N, -1) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, C) -> treat N as temporal for attention res = x # swap dims to (B, T, C) for attn if needed x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] kan_hidden = args.get("kan_hidden", 8) # 动态图构建 self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16) # 输入映射:KAN替代线性层 self.input_proj = KANLinear( self.seq_len, self.hidden_dim, hidden_funcs=kan_hidden ) # 图卷积 self.gc = GraphConvBlock( self.hidden_dim, self.hidden_dim, kan_hidden=kan_hidden ) # 时间建模:保持MANBA self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2) # 输出映射:KAN替代线性层 out_size = self.horizon * self.output_dim self.out_proj = KANLinear(self.hidden_dim, out_size, hidden_funcs=kan_hidden) def forward(self, x): # x: (B, T, N, D_total) x = x[..., 0] B, T, N = x.shape assert T == self.seq_len # 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T) x = x.permute(0, 2, 1).reshape(B * N, T) h = self.input_proj(x) # (B*N, hidden_dim) h = h.view(B, N, self.hidden_dim) # 动态图 adj = self.graph() # 空间:图卷积 h = self.gc(h, adj) # 时间:MANBA h = self.manba(h) # 输出 h_flat = h.view(B * N, self.hidden_dim) out = self.out_proj(h_flat) out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3) return out