import torch import torch.nn as nn import torch.nn.functional as F """ 添加空间嵌入 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() # 自适应邻接参数 self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): # 构造动态邻接矩阵 adj = torch.matmul(self.nodevec1, self.nodevec2.T) # (N, N) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() # 线性变换 + 可选残差投影 self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # x: (B, N, F_in), adj: (N, N) res = x x = torch.matmul(adj, x) # 邻接乘特征 x = self.theta(x) # 线性变换 # 残差连接 x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() # 空间自注意力 + 前馈网络 self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, C) res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): # h: (B, N, hidden_dim) h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() # 多层感知机 dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): # 对最后一维做线性映射 return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() # 训练 & 输出参数 self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # ==== 时间嵌入 ==== self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) self.node_emb = nn.Parameter(torch.empty(self.num_nodes, self.embed_dim)) # ==== 空间嵌入 ==== # 每个节点一个可学习的向量 self.spatial_embedding = nn.Parameter( torch.randn(self.num_nodes, self.hidden_dim), requires_grad=True ) # 输入投影:仅对流量序列做 MLP self.input_proj = MLP( in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim ) # 两个 SandwichBlock self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出投影 self.out_proj = MLP( in_dim=self.hidden_dim, hidden_dims=[2 * self.hidden_dim], out_dim=self.horizon * self.output_dim ) def forward(self, x): """ x: (B, T, N, D_total) D_total >= 3,其中: x[...,0] = 流量 (flow) x[...,1] = 当天时间比 (time_in_day,归一化到 [0,1]) x[...,2] = 星期几 (day_in_week,0–6) """ # 拆分三条序列 x_flow = x[..., 0] # (B, T, N) x_time = x[..., 1] # (B, T, N) x_day = x[..., 2] # (B, T, N) B, T, N = x_flow.shape assert T == self.seq_len, f"序列长度应为 {self.seq_len},但收到 {T}" # 1) MLP 投影流量历史 -> 节点初始特征 h0 x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) # (B*N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # (B, N, hidden_dim) # 2) 计算离散时间嵌入 t_idx = (x_time[:, -1, :] * (self.time_slots - 1)).long() # (B, N) d_idx = x_day[:, -1, :].long() # (B, N) time_emb = self.time_embedding(t_idx) # (B, N, hidden_dim) day_emb = self.day_embedding(d_idx) # (B, N, hidden_dim) # 3) 计算空间嵌入并扩展到 batch 大小 # node_emb = [] # node_emb.append(self.node_emb.unsqueeze(0).expand( # B, -1, -1).transpose(1, 2).unsqueeze(-1)) # spatial_emb = torch.stack(node_emb) spatial_emb = self.spatial_embedding.unsqueeze(0).expand(B, N, self.hidden_dim) # -> (B, N, hidden_dim) # 4) 将三种嵌入相加到 h0 h0 = h0 + time_emb + day_emb + spatial_emb # 5) 两层 Sandwich + 残差连接 h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # 6) 输出投影 -> (B, horizon, N, output_dim) out = self.out_proj(h2) # (B, N, horizon*out_dim) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim) return out