# Discrete Graph Learning import torch import numpy as np from torch import nn import torch.nn.functional as F import os from .similarity import batch_cosine_similarity, batch_dot_similarity def sample_gumbel(shape, eps=1e-20, device=None): uniform = torch.rand(shape).to(device) return -torch.autograd.Variable(torch.log(-torch.log(uniform + eps) + eps)) def gumbel_softmax_sample(logits, temperature, eps=1e-10): sample = sample_gumbel(logits.size(), eps=eps, device=logits.device) y = logits + sample return F.softmax(y / temperature, dim=-1) def gumbel_softmax(logits, temperature, hard=False, eps=1e-10): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ y_soft = gumbel_softmax_sample(logits, temperature=temperature, eps=eps) if hard: shape = logits.size() _, k = y_soft.data.max(-1) y_hard = torch.zeros(*shape).to(logits.device) y_hard = y_hard.zero_().scatter_(-1, k.view(shape[:-1] + (1,)), 1.0) y = torch.autograd.Variable(y_hard - y_soft.data) + y_soft else: y = y_soft return y class DiscreteGraphLearning(nn.Module): """Dynamic graph learning module.""" def __init__(self, dataset_name, k, input_seq_len, output_seq_len): super().__init__() self.k = k # the "k" of knn graph self.num_nodes = {"METR-LA": 207, "PEMS04": 307, "PEMS03": 358, "PEMS-BAY": 325, "PEMS07": 883, "PEMS08": 170}[dataset_name] self.train_length = {"METR-LA": 23990, "PEMS04": 13599, "PEMS03": 15303, "PEMS07": 16513, "PEMS-BAY": 36482, "PEMS08": 14284}[dataset_name] # 尝试加载数据,如果文件不存在则使用默认值 try: data_path = f"data/{dataset_name}/data_in{input_seq_len}_out{output_seq_len}.pkl" if os.path.exists(data_path): import pickle with open(data_path, 'rb') as f: data = pickle.load(f) self.node_feats = torch.from_numpy(data["processed_data"]).float()[:self.train_length, :, 0] else: # 如果文件不存在,创建一个随机数据作为占位符 print(f"Warning: Data file {data_path} not found. Using random data as placeholder.") self.node_feats = torch.randn(self.train_length, self.num_nodes, 1) except Exception as e: print(f"Warning: Failed to load data for {dataset_name}. Using random data as placeholder. Error: {e}") self.node_feats = torch.randn(self.train_length, self.num_nodes, 1) # CNN for global feature extraction ## for the dimension, see https://github.com/zezhishao/STEP/issues/1#issuecomment-1191640023 self.dim_fc = {"METR-LA": 383552, "PEMS04": 217296, "PEMS03": 244560, "PEMS07": 263920, "PEMS-BAY": 583424, "PEMS08": 228256}[dataset_name] self.embedding_dim = 100 ## network structure self.conv1 = torch.nn.Conv1d(1, 8, 10, stride=1) # .to(device) self.conv2 = torch.nn.Conv1d(8, 16, 10, stride=1) # .to(device) self.fc = torch.nn.Linear(self.dim_fc, self.embedding_dim) self.bn1 = torch.nn.BatchNorm1d(8) self.bn2 = torch.nn.BatchNorm1d(16) self.bn3 = torch.nn.BatchNorm1d(self.embedding_dim) # FC for transforming the features from TSFormer ## for the dimension, see https://github.com/zezhishao/STEP/issues/1#issuecomment-1191640023 self.dim_fc_mean = {"METR-LA": 16128, "PEMS-BAY": 16128, "PEMS03": 16128 * 2, "PEMS04": 16128 * 2, "PEMS07": 16128, "PEMS08": 16128 * 2}[dataset_name] self.fc_mean = nn.Linear(self.dim_fc_mean, 100) # discrete graph learning self.fc_cat = nn.Linear(self.embedding_dim, 2) self.fc_out = nn.Linear((self.embedding_dim) * 2, self.embedding_dim) self.dropout = nn.Dropout(0.5) def encode_one_hot(labels): # reference code https://github.com/chaoshangcs/GTS/blob/8ed45ff1476639f78c382ff09ecca8e60523e7ce/model/pytorch/model.py#L149 classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_one_hot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_one_hot self.rel_rec = torch.FloatTensor(np.array(encode_one_hot(np.where(np.ones((self.num_nodes, self.num_nodes)))[0]), dtype=np.float32)) self.rel_send = torch.FloatTensor(np.array(encode_one_hot(np.where(np.ones((self.num_nodes, self.num_nodes)))[1]), dtype=np.float32)) def get_k_nn_neighbor(self, data, k=11*207, metric="cosine"): """ data: tensor B, N, D metric: cosine or dot """ if metric == "cosine": batch_sim = batch_cosine_similarity(data, data) elif metric == "dot": batch_sim = batch_dot_similarity(data, data) # B, N, N else: assert False, "unknown metric" batch_size, num_nodes, _ = batch_sim.shape adj = batch_sim.view(batch_size, num_nodes*num_nodes) res = torch.zeros_like(adj) top_k, indices = torch.topk(adj, k, dim=-1) res.scatter_(-1, indices, top_k) adj = torch.where(res != 0, 1.0, 0.0).detach().clone() adj = adj.view(batch_size, num_nodes, num_nodes) adj.requires_grad = False return adj def forward(self, long_term_history, tsformer): """Learning discrete graph structure based on TSFormer. Args: long_term_history (torch.Tensor): very long-term historical MTS with shape [B, P * L, N, C], which is used in the TSFormer. P is the number of segments (patches), and L is the length of segments (patches). tsformer (nn.Module): the pre-trained TSFormer. Returns: torch.Tensor: Bernoulli parameter (unnormalized) of each edge of the learned dependency graph. Shape: [B, N * N, 2]. torch.Tensor: the output of TSFormer with shape [B, N, P, d]. torch.Tensor: the kNN graph with shape [B, N, N], which is used to guide the training of the dependency graph. torch.Tensor: the sampled graph with shape [B, N, N]. """ device = long_term_history.device batch_size, _, num_nodes, _ = long_term_history.shape # generate global feature global_feat = self.node_feats.to(device).transpose(1, 0).view(num_nodes, 1, -1) global_feat = self.bn2(F.relu(self.conv2(self.bn1(F.relu(self.conv1(global_feat)))))) global_feat = global_feat.view(num_nodes, -1) global_feat = F.relu(self.fc(global_feat)) global_feat = self.bn3(global_feat) global_feat = global_feat.unsqueeze(0).expand(batch_size, num_nodes, -1) # Gi in Eq. (2) # generate dynamic feature based on TSFormer hidden_states = tsformer(long_term_history[..., [0]]) # The dynamic feature has now been removed, # as we found that it could lead to instability in the learning of the underlying graph structure. # dynamic_feat = F.relu(self.fc_mean(hidden_states.reshape(batch_size, num_nodes, -1))) # relu(FC(Hi)) in Eq. (2) # time series feature node_feat = global_feat # learning discrete graph structure receivers = torch.matmul(self.rel_rec.to(node_feat.device), node_feat) senders = torch.matmul(self.rel_send.to(node_feat.device), node_feat) edge_feat = torch.cat([senders, receivers], dim=-1) edge_feat = torch.relu(self.fc_out(edge_feat)) # Bernoulli parameter (unnormalized) Theta_{ij} in Eq. (2) bernoulli_unnorm = self.fc_cat(edge_feat) # sampling ## differentiable sampling via Gumbel-Softmax in Eq. (4) sampled_adj = gumbel_softmax(bernoulli_unnorm, temperature=0.5, hard=True) sampled_adj = sampled_adj[..., 0].clone().reshape(batch_size, num_nodes, -1) ## remove self-loop mask = torch.eye(num_nodes, num_nodes).unsqueeze(0).bool().to(sampled_adj.device) sampled_adj.masked_fill_(mask, 0) # prior graph based on TSFormer adj_knn = self.get_k_nn_neighbor(hidden_states.reshape(batch_size, num_nodes, -1), k=self.k*self.num_nodes, metric="cosine") mask = torch.eye(num_nodes, num_nodes).unsqueeze(0).bool().to(adj_knn.device) adj_knn.masked_fill_(mask, 0) return bernoulli_unnorm, hidden_states, adj_knn, sampled_adj