import math import os import time import copy import psutil from tqdm import tqdm import torch from lib.logger import get_logger from lib.loss_function import all_metrics from model.STEP.step_loss import step_loss class TrainingStats: def __init__(self, device): self.device = device self.reset() def reset(self): self.gpu_mem_usage_list = [] self.cpu_mem_usage_list = [] self.train_time_list = [] self.infer_time_list = [] self.total_iters = 0 self.start_time = None self.end_time = None def start_training(self): self.start_time = time.time() def end_training(self): self.end_time = time.time() def record_step_time(self, duration, mode): """记录单步耗时和总迭代次数""" if mode == 'train': self.train_time_list.append(duration) else: self.infer_time_list.append(duration) self.total_iters += 1 def record_memory_usage(self): """记录当前 GPU 和 CPU 内存占用""" process = psutil.Process(os.getpid()) cpu_mem = process.memory_info().rss / (1024 ** 2) if torch.cuda.is_available(): gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024 ** 2) torch.cuda.reset_peak_memory_stats(device=self.device) else: gpu_mem = 0.0 self.cpu_mem_usage_list.append(cpu_mem) self.gpu_mem_usage_list.append(gpu_mem) def report(self, logger): """在训练结束时输出汇总统计""" if not self.start_time or not self.end_time: logger.warning("TrainingStats: start/end time not recorded properly.") return total_time = self.end_time - self.start_time avg_gpu_mem = sum(self.gpu_mem_usage_list) / len(self.gpu_mem_usage_list) if self.gpu_mem_usage_list else 0 avg_cpu_mem = sum(self.cpu_mem_usage_list) / len(self.cpu_mem_usage_list) if self.cpu_mem_usage_list else 0 avg_train_time = sum(self.train_time_list) / len(self.train_time_list) if self.train_time_list else 0 avg_infer_time = sum(self.infer_time_list) / len(self.infer_time_list) if self.infer_time_list else 0 iters_per_sec = self.total_iters / total_time if total_time > 0 else 0 logger.info("===== Training Summary =====") logger.info(f"Total training time: {total_time:.2f} s") logger.info(f"Total iterations: {self.total_iters}") logger.info(f"Average iterations per second: {iters_per_sec:.2f}") logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB") logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB") if avg_train_time: logger.info(f"Average training step time: {avg_train_time*1000:.2f} ms") if avg_infer_time: logger.info(f"Average inference step time: {avg_infer_time*1000:.2f} ms") class Trainer: def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args, lr_scheduler=None): self.model = model self.loss = loss self.optimizer = optimizer self.train_loader = train_loader self.val_loader = val_loader self.test_loader = test_loader self.scaler = scaler self.args = args self.lr_scheduler = lr_scheduler self.train_per_epoch = len(train_loader) self.val_per_epoch = len(val_loader) if val_loader else 0 # Paths for saving models and logs log_dir = args.get('log_dir', './logs/STEP') os.makedirs(log_dir, exist_ok=True) # 确保目录存在 self.best_path = os.path.join(log_dir, 'best_model.pth') self.best_test_path = os.path.join(log_dir, 'best_test_model.pth') self.loss_figure_path = os.path.join(log_dir, 'loss.png') # Initialize logger log_dir = args.get('log_dir', './logs/STEP') self.logger = get_logger(log_dir, name='STEP_Trainer') # Initialize training stats self.device = next(model.parameters()).device self.stats = TrainingStats(self.device) def train_epoch(self, epoch): self.model.train() total_loss = 0 total_metrics = {} with tqdm(self.train_loader, desc=f'Epoch {epoch}') as pbar: for batch_idx, (data, target) in enumerate(pbar): start_time = time.time() data = data.to(self.device) target = target.to(self.device) self.optimizer.zero_grad() # STEP模型的前向传播 output = self.model(data) # 计算损失(这里需要根据STEP模型的具体输出调整) # STEP模型返回多个输出,包括预测值、Bernoulli参数等 if isinstance(output, tuple): prediction = output[0] # 如果模型返回了其他参数,可以在这里处理 else: prediction = output # 使用标准损失函数 if callable(self.loss) and hasattr(self.loss, '__call__'): # 如果是一个可调用对象(比如masked_mae_loss返回的函数) if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)): loss_fn = self.loss(None, None) # 创建实际的损失函数 loss = loss_fn(prediction, target) else: loss = self.loss(prediction, target) else: # 如果是PyTorch的损失函数 loss = self.loss(prediction, target) loss.backward() # 梯度裁剪 if self.args.get('clip_grad_norm', 0) > 0: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['clip_grad_norm']) self.optimizer.step() # 记录统计信息 step_time = time.time() - start_time self.stats.record_step_time(step_time, 'train') total_loss += loss.item() # 计算指标 mae, rmse, mape = all_metrics(prediction, target, None, 0.0) metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()} for key, value in metrics.items(): if key not in total_metrics: total_metrics[key] = 0 total_metrics[key] += value # 更新进度条 pbar.set_postfix({ 'Loss': f'{loss.item():.4f}', 'MAE': f'{metrics.get("mae", 0):.4f}', 'RMSE': f'{metrics.get("rmse", 0):.4f}' }) # 记录内存使用 if batch_idx % 100 == 0: self.stats.record_memory_usage() # 计算平均损失和指标 avg_loss = total_loss / len(self.train_loader) avg_metrics = {key: value / len(self.train_loader) for key, value in total_metrics.items()} return avg_loss, avg_metrics def val_epoch(self, epoch): self.model.eval() total_loss = 0 total_metrics = {} with torch.no_grad(): with tqdm(self.val_loader, desc=f'Validation {epoch}') as pbar: for batch_idx, (data, target) in enumerate(pbar): start_time = time.time() data = data.to(self.device) target = target.to(self.device) # STEP模型的前向传播 output = self.model(data) if isinstance(output, tuple): prediction = output[0] else: prediction = output # 计算损失 if callable(self.loss) and hasattr(self.loss, '__call__'): # 如果是一个可调用对象(比如masked_mae_loss返回的函数) if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)): loss_fn = self.loss(None, None) # 创建实际的损失函数 loss = loss_fn(prediction, target) else: loss = self.loss(prediction, target) else: # 如果是PyTorch的损失函数 loss = self.loss(prediction, target) # 记录统计信息 step_time = time.time() - start_time self.stats.record_step_time(step_time, 'val') total_loss += loss.item() # 计算指标 mae, rmse, mape = all_metrics(prediction, target, None, 0.0) metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()} for key, value in metrics.items(): if key not in total_metrics: total_metrics[key] = 0 total_metrics[key] += value # 更新进度条 pbar.set_postfix({ 'Loss': f'{loss.item():.4f}', 'MAE': f'{metrics.get("mae", 0):.4f}', 'RMSE': f'{metrics.get("rmse", 0):.4f}' }) # 计算平均损失和指标 avg_loss = total_loss / len(self.val_loader) avg_metrics = {key: value / len(self.val_loader) for key, value in total_metrics.items()} return avg_loss, avg_metrics def test_epoch(self, epoch): self.model.eval() total_loss = 0 total_metrics = {} with torch.no_grad(): with tqdm(self.test_loader, desc=f'Test {epoch}') as pbar: for batch_idx, (data, target) in enumerate(pbar): start_time = time.time() data = data.to(self.device) target = target.to(self.device) # STEP模型的前向传播 output = self.model(data) if isinstance(output, tuple): prediction = output[0] else: prediction = output # 计算损失 if callable(self.loss) and hasattr(self.loss, '__call__'): # 如果是一个可调用对象(比如masked_mae_loss返回的函数) if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)): loss_fn = self.loss(None, None) # 创建实际的损失函数 loss = loss_fn(prediction, target) else: loss = self.loss(prediction, target) else: # 如果是PyTorch的损失函数 loss = self.loss(prediction, target) # 记录统计信息 step_time = time.time() - start_time self.stats.record_step_time(step_time, 'test') total_loss += loss.item() # 计算指标 mae, rmse, mape = all_metrics(prediction, target, None, 0.0) metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()} for key, value in metrics.items(): if key not in total_metrics: total_metrics[key] = 0 total_metrics[key] += value # 更新进度条 pbar.set_postfix({ 'Loss': f'{loss.item():.4f}', 'MAE': f'{metrics.get("mae", 0):.4f}', 'RMSE': f'{metrics.get("rmse", 0):.4f}' }) # 计算平均损失和指标 avg_loss = total_loss / len(self.test_loader) avg_metrics = {key: value / len(self.test_loader) for key, value in total_metrics.items()} return avg_loss, avg_metrics def train(self): self.stats.start_training() best_val_loss = float('inf') best_test_loss = float('inf') for epoch in range(self.args['epochs']): # 训练 train_loss, train_metrics = self.train_epoch(epoch) # 验证 if self.val_loader: val_loss, val_metrics = self.val_epoch(epoch) # 保存最佳模型 if val_loss < best_val_loss: best_val_loss = val_loss torch.save(self.model.state_dict(), self.best_path) self.logger.info(f'Epoch {epoch}: Best validation loss: {val_loss:.4f}') # 测试 if self.test_loader: test_loss, test_metrics = self.test_epoch(epoch) # 保存最佳测试模型 if test_loss < best_test_loss: best_test_loss = test_loss torch.save(self.model.state_dict(), self.best_test_path) self.logger.info(f'Epoch {epoch}: Best test loss: {test_loss:.4f}') # 学习率调度 if self.lr_scheduler: self.lr_scheduler.step() # 记录日志 self.logger.info(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, Train MAE: {train_metrics.get("mae", 0):.4f}') if self.val_loader: self.logger.info(f'Epoch {epoch}: Val Loss: {val_loss:.4f}, Val MAE: {val_metrics.get("mae", 0):.4f}') if self.test_loader: self.logger.info(f'Epoch {epoch}: Test Loss: {test_loss:.4f}, Test MAE: {test_metrics.get("mae", 0):.4f}') self.stats.end_training() self.stats.report(self.logger) return best_val_loss, best_test_loss