import torch def masked_mae_loss(scaler, mask_value): def loss(preds, labels): # # 仅对预测反归一化;标签在数据管道中保持原始量纲 # if scaler: # preds = scaler.inverse_transform(preds) return mae_torch(pred=preds, true=labels, mask_value=mask_value) return loss def mae_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.mean(torch.abs(true - pred)) def rmse_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.sqrt(torch.mean((pred - true) ** 2)) def mape_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001)))) def all_metrics(pred, true, mask1, mask2): if mask1 == "None": mask1 = None if mask2 == "None": mask2 = None mae = mae_torch(pred, true, mask1) rmse = rmse_torch(pred, true, mask1) mape = mape_torch(pred, true, mask2) return mae, rmse, mape if __name__ == "__main__": pred = torch.Tensor([1, 2, 3, 4]) true = torch.Tensor([2, 1, 4, 5]) print(all_metrics(pred, true, None, None))