import torch import torch.nn as nn import torch.nn.functional as F """ 含残差版本 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): # (N, D) @ (D, N) -> (N, N) adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # x: (B, N, C) / adj: (N, N) res = x x = torch.matmul(adj, x) # (B, N, C) x = self.theta(x) # 残差连接 if self.residual: x = x + res else: x = x + self.res_proj(res) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, T, C) res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # 动态图构建 self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16) # 输入映射层 self.input_proj = nn.Linear(self.seq_len, self.hidden_dim) # 图卷积 self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim) # MANBA block self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2) # 输出映射 self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim) def forward(self, x): # x: (B, T, N, D_total) x_time = x[..., 1] # (B, T, N) x_day = x[..., 2] # (B, T, N) x = x[..., 0] # 只用主通道 (B, T, N) B, T, N = x.shape assert T == self.seq_len # 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T) -> (B*N, H) x = x.permute(0, 2, 1).reshape(B * N, T) h = self.input_proj(x) # (B*N, hidden_dim) h = h.view(B, N, self.hidden_dim) t_idx = ( x_time[ :, -1, :, ] * (self.time_slots - 1) ).long() # (B, N) d_idx = x_day[ :, -1, :, ].long() # (B, N) time_emb = self.time_embedding(t_idx) # (B, N, hidden_dim) day_emb = self.day_embedding(d_idx) # (B, N, hidden_dim) # 3) inject them into the initial hidden state h = h + time_emb + day_emb # 动态图构建 adj = self.graph() # (N, N) # 空间建模:图卷积 h = self.gc(h, adj) # (B, N, hidden_dim) # 时间建模:MANBA h = self.manba(h) # (B, N, hidden_dim) # 输出映射 out = self.out_proj(h) # (B, N, horizon * output_dim) out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3) return out # (B, horizon, N, output_dim)