import torch import torch.nn as nn import torch.nn.functional as F """ 在 EXP 模型中添加趋势专家、周期专家和物理专家,并通过门控网络(Gating Network)动态融合专家输出 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 # --------- 新增:专家网络定义 --------- class TrendExpert(nn.Module): """捕捉数据中的长期趋势""" def __init__(self, hidden_dim): super().__init__() self.trend_mlp = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), ) def forward(self, h): return self.trend_mlp(h) class PeriodicExpert(nn.Module): """捕捉周期性模式""" def __init__(self, hidden_dim): super().__init__() self.periodic_mlp = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, hidden_dim), ) def forward(self, h): # 占位:可扩展为傅里叶域处理 return self.periodic_mlp(h) class PhysicalExpert(nn.Module): """基于物理规律的图卷积专家""" def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.graph_conv = GraphConvBlock(hidden_dim, hidden_dim) def forward(self, h): adj = self.graph_constructor() return self.graph_conv(h, adj) class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() # 原始配置 self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.embed_dim = args.get("embed_dim", 16) # 时间嵌入 self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # 输入流量投影 self.input_proj = MLP( in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim ) # --------- 新增:专家与门控网络 --------- self.num_experts = 3 self.trend_expert = TrendExpert(self.hidden_dim) self.periodic_expert = PeriodicExpert(self.hidden_dim) self.physical_expert = PhysicalExpert( self.num_nodes, self.embed_dim, self.hidden_dim ) # 门控网络,根据 h0 动态生成专家权重 self.gating = nn.Sequential( nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, self.num_experts), ) # 两个 Sandwich 模块 self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出投影 self.out_proj = MLP( in_dim=self.hidden_dim, hidden_dims=[2 * self.hidden_dim], out_dim=self.horizon * self.output_dim, ) def forward(self, x): # x: (B, T, N, D_total) x_flow = x[..., 0] # 流量 x_time = x[..., 1] # 时间槽归一化 x_day = x[..., 2] # 星期几 B, T, N = x_flow.shape assert T == self.seq_len # 1) 流量历史投影 x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # 2) 时间与星期嵌入 t_idx = ( x_time[ :, -1, :, ] * (self.time_slots - 1) ).long() d_idx = x_day[ :, -1, :, ].long() time_emb = self.time_embedding(t_idx) day_emb = self.day_embedding(d_idx) # 注入 h0 = h0 + time_emb + day_emb # 3) 门控融合专家输出 g = self.gating(h0) # (B, N, 3) g = F.softmax(g, dim=-1) h_trend = self.trend_expert(h0) h_periodic = self.periodic_expert(h0) h_physical = self.physical_expert(h0) # 加权相加 h0 = g[..., 0:1] * h_trend + g[..., 1:2] * h_periodic + g[..., 2:3] * h_physical # 4) Sandwich + 残差 h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # 5) 输出 out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) return out