basic: dataset: METR-LA device: cuda:0 mode: train model: GWN seed: 2023 data: batch_size: 64 column_wise: false days_per_week: 7 horizon: 24 input_dim: 1 lag: 24 normalizer: std num_nodes: 207 steps_per_day: 288 test_ratio: 0.2 val_ratio: 0.2 model: addaptadj: true apt_size: 10 aptinit: null batch_size: 64 blocks: 4 dilation_channels: 32 dropout: 0.3 do_graph_conv: True end_channels: 512 gcn_bool: true in_dim: 1 input_dim: 1 kernel_size: 2 layers: 4 num_nodes: 207 out_dim: 24 residual_channels: 32 skip_channels: 256 supports: null train: batch_size: 64 debug: false early_stop: true early_stop_patience: 15 epochs: 300 grad_norm: false log_step: 1000 loss_func: mae lr_decay: false lr_decay_rate: 0.3 lr_decay_step: 5,20,40,70 lr_init: 0.003 mae_thresh: 0.0 mape_thresh: 0.0 max_grad_norm: 5 output_dim: 1 plot: false real_value: true weight_decay: 0