import math import torch import torch.nn as nn import torch.nn.functional as F # ------------------------- CycleNet Component ------------------------- class RecurrentCycle(nn.Module): """Efficient cyclic data removal/addition.""" def __init__(self, cycle_len, channel_size): super().__init__() self.cycle_len = cycle_len self.channel_size = channel_size # 初始化周期缓存:shape (cycle_len, channel_size) self.data = nn.Parameter(torch.zeros(cycle_len, channel_size)) def forward(self, index, length): # index: (B,), length: seq_len 或 pred_len B = index.size(0) # 生成 [0,1,...,length-1] 的偏移,shape (1, length) arange = torch.arange(length, device=index.device).unsqueeze(0) # 对每条样本的起始 index 加 arange 并对 cycle_len 取模 idx = (index.unsqueeze(1) + arange) % self.cycle_len # (B, length) # 返回对应的周期值 (B, length, channel_size) return self.data[idx] # ------------------------- Core Blocks ------------------------- class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim)) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim)) def forward(self): adj = F.relu(torch.matmul(self.nodevec1, self.nodevec2.T)) return F.softmax(adj, dim=-1) class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) if not self.residual: res = self.res_proj(res) return F.relu(x + res) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) return self.norm2(res2 + x_ffn) class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) return self.manba2(h2) class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i+1]), activation()] layers.append(nn.Linear(dims[-2], dims[-1])) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) # ------------------------- EXP with CycleNet ------------------------- class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] # 预测步长 self.output_dim = args['output_dim'] # 输出维度 (一般=1) self.seq_len = args.get('in_len', 12) # 输入序列长度 self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # 时间嵌入 self.time_slots = args.get('time_slots', 288) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # CycleNet self.cycleQueue = RecurrentCycle(cycle_len=args['cycle_len'], channel_size=self.num_nodes) # 输入投影 (序列长度 -> 隐藏维度) self.input_proj = MLP(self.seq_len, [self.hidden_dim], self.hidden_dim) # 两层 Sandwich self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出投影 self.out_proj = MLP(self.hidden_dim, [2*self.hidden_dim], self.horizon * self.output_dim) def forward(self, x, cycle_index): # x: (B, T, N, D>=3) # 1) 拆流量和时间特征,保证丢掉通道维 x_flow = x[..., 0] # -> (B, T, N) or (B, T, N, 1) 如果之前切片错用了0:1 x_time = x[..., 1] x_day = x[..., 2] B, T, N = x_flow.shape # DEBUG 打印(可删除) # print("DEBUG x_flow.dim(), shape:", x_flow.dim(), x_flow.shape) # 2) 去周期化 cyc = self.cycleQueue(cycle_index, T).squeeze(1) # (B, T, N) x_flow = x_flow - cyc # 3) 序列投影 h0 = x_flow.permute(0, 2, 1).reshape(B * N, T) # -> (B*N, T) h0 = self.input_proj(h0).view(B, N, self.hidden_dim) # 4) 加时间嵌入 t_idx = (x_time[:, -1] * (self.time_slots - 1)).long() # (B, N) d_idx = x_day[:, -1].long() # (B, N) h0 = h0 + self.time_embedding(t_idx) + self.day_embedding(d_idx) # 5) Sandwich Blocks h1 = self.sandwich1(h0) + h0 h2 = self.sandwich2(h1) # 6) 输出投影并 reshape out = self.out_proj(h2) # (B, N, H*O) out = out.view(B, N, self.horizon, self.output_dim) # (B, N, H, O) out = out.permute(0, 2, 1, 3) # (B, H, N, O) # 加回周期 idx_out = (cycle_index + self.seq_len) % self.cycleQueue.cycle_len cyc_out = self.cycleQueue(idx_out, self.horizon) # (B, 1, H, N) # squeeze 掉第1维并 unsqueeze 最后一维 cyc_out = cyc_out.squeeze(1).unsqueeze(-1) # (B, H, N, 1) # 加回周期分量 return out + cyc_out