import torch import torch.nn as nn import torch.nn.functional as F """ 含残差的双层三明治结构模型 第一层:时间 -> 空间 -> 时间 -> Conv -> Residual差分 -> 输入第二层 第二层:时间 -> 空间 -> 时间 -> Conv -> 最终输出 无效但接近 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): # (N, D) @ (D, N) -> (N, N) adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # x: (B, N, C); adj: (N, N) res = x x = torch.matmul(adj, x) # 空间卷积 x = self.theta(x) # 残差 x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, C) 视 N 维为时间序列长度 res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): """ 时间-空间-时间 三明治结构 输入/输出: (B, N, hidden_dim) """ def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): # h: (B, N, hidden_dim) h1 = self.manba1(h) adj = self.graph_constructor() # (N, N) h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # 输入映射: (batch*N, seq_len) -> hidden_dim self.input_proj = nn.Linear(self.seq_len, self.hidden_dim) # 两层三明治块 self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 卷积层用于残差处理 self.res_conv1 = nn.Conv1d(in_channels=self.hidden_dim, out_channels=self.hidden_dim, kernel_size=1) self.res_conv2 = nn.Conv1d(in_channels=self.hidden_dim, out_channels=self.hidden_dim, kernel_size=1) # 输出映射 self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim) def forward(self, x): # x: (B, T, N, D_total) x_main = x[..., 0] # (B, T, N) B, T, N = x_main.shape assert T == self.seq_len # 输入投影 (B, T, N) -> (B*N, T) -> (B, N, hidden_dim) x_flat = x_main.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # 第一层三明治 h1_sand = self.sandwich1(h0) # (B, N, hidden_dim) # 卷积残差 (节点维度视为长度) h1_perm = h1_sand.permute(0, 2, 1) # (B, C, N) h1_conv = self.res_conv1(h1_perm) h1 = h1_conv.permute(0, 2, 1) # (B, N, hidden_dim) # 计算差分残差作为第二层输入 h2_input = h1 - h0 # 第二层三明治 h2_sand = self.sandwich2(h2_input) # 再次卷积处理 h2_perm = h2_sand.permute(0, 2, 1) h2 = self.res_conv2(h2_perm).permute(0, 2, 1) # 输出映射 out = self.out_proj(h2) # (B, N, H*D_out) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim) return out