import torch import torch.nn as nn import torch.nn.functional as F """ 使用多层感知机替换输入输出的 proj 层,并将图卷积替换为图注意力网络(GAT) """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): # 构造可学习的邻接矩阵 adj = torch.matmul(self.nodevec1, self.nodevec2.T) # (N, N) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GATConvBlock(nn.Module): """ 简易版 GAT 实现: - 先对每个节点特征做线性变换 - 计算每对节点间的注意力得分 - 掩码掉非边(adj == 0),softmax 后做加权求和 - 加上残差并经过非线性 """ def __init__(self, input_dim, output_dim, alpha=0.2): super().__init__() self.fc = nn.Linear(input_dim, output_dim, bias=False) self.attn_fc = nn.Linear(2 * output_dim, 1, bias=False) self.leakyrelu = nn.LeakyReLU(alpha) self.residual = (input_dim == output_dim) if not self.residual: self.res_fc = nn.Linear(input_dim, output_dim, bias=False) def forward(self, x, adj): """ x: (B, N, F_in) adj: (N, N), 动态学习得到的邻接矩阵 返回 h_prime: (B, N, F_out) """ B, N, _ = x.shape h = self.fc(x) # (B, N, F_out) # 计算每对节点的注意力打分 h_i = h.unsqueeze(2).expand(-1, -1, N, -1) # (B, N, N, F_out) h_j = h.unsqueeze(1).expand(-1, N, -1, -1) # (B, N, N, F_out) e = self.attn_fc(torch.cat([h_i, h_j], dim=-1)).squeeze(-1) # (B, N, N) e = self.leakyrelu(e) # 掩码:只有 adj > 0 的位置保留注意力,否则置为 -inf mask = adj.unsqueeze(0).expand(B, -1, -1) > 0 e = e.masked_fill(~mask, float('-inf')) # 归一化注意力 alpha = F.softmax(e, dim=-1) # (B, N, N) # 聚合邻居 h_prime = torch.matmul(alpha, h) # (B, N, F_out) # 残差连接 if self.residual: h_prime = h_prime + x else: h_prime = h_prime + self.res_fc(x) return F.elu(h_prime) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, input_dim) — 将节点序列看作时间序列处理 res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gat = GATConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): # h: (B, N, hidden_dim) h1 = self.manba1(h) # 自注意力 + FFN adj = self.graph_constructor() # 动态邻接 (N, N) h2 = self.gat(h1, adj) # GAT 聚合 h3 = self.manba2(h2) # 再一次自注意力 + FFN return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): # 支持任意形状,Linear 运算对最后一维有效 return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # 用 MLP 替换原来的输入投影 self.input_proj = MLP(self.seq_len, [self.hidden_dim], self.hidden_dim) # 两层 SandwichBlock self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 用 MLP 替换原来的输出投影 self.out_proj = MLP(self.hidden_dim, [2 * self.hidden_dim], self.horizon * self.output_dim) def forward(self, x): """ x: (B, T, N, D_total) 假设 D_total >= 1,且我们只使用第 0 维特征进行预测 返回: out: (B, horizon, N, output_dim) """ x_main = x[..., 0] # (B, T, N) B, T, N = x_main.shape assert T == self.seq_len, f"Expected seq_len={self.seq_len}, got {T}" # (B, T, N) -> (B, N, T) -> (B*N, T) -> MLP -> (B, N, hidden_dim) x_flat = x_main.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # 两层 Sandwich + 残差 h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # 输出投影 out = self.out_proj(h2) # (B, N, horizon * output_dim) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim) return out