import torch, torch.nn as nn, torch.nn.functional as F from collections import OrderedDict class DGCRM(nn.Module): def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1): super().__init__() self.node_num, self.input_dim, self.num_layers = node_num, dim_in, num_layers self.cells = nn.ModuleList( [ DDGCRNCell( node_num, dim_in if i == 0 else dim_out, dim_out, cheb_k, embed_dim ) for i in range(num_layers) ] ) def forward(self, x, init_state, node_embeddings): assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim for i in range(self.num_layers): state, inner = init_state[i].to(x.device), [] for t in range(x.shape[1]): state = self.cells[i]( x[:, t, :, :], state, [node_embeddings[0][:, t, :, :], node_embeddings[1]], ) inner.append(state) init_state[i] = state x = torch.stack(inner, dim=1) return x, init_state def init_hidden(self, bs): return torch.stack([cell.init_hidden_state(bs) for cell in self.cells], dim=0) class DDGCRN(nn.Module): def __init__(self, args): super().__init__() self.num_node, self.input_dim, self.hidden_dim = ( args["num_nodes"], args["input_dim"], args["rnn_units"], ) self.output_dim, self.horizon, self.num_layers = ( args["output_dim"], args["horizon"], args["num_layers"], ) self.use_day, self.use_week = args["use_day"], args["use_week"] self.node_embeddings1 = nn.Parameter( torch.randn(self.num_node, args["embed_dim"]), requires_grad=True ) self.node_embeddings2 = nn.Parameter( torch.randn(self.num_node, args["embed_dim"]), requires_grad=True ) self.T_i_D_emb = nn.Parameter(torch.empty(288, args["embed_dim"])) self.D_i_W_emb = nn.Parameter(torch.empty(7, args["embed_dim"])) self.drop1, self.drop2 = nn.Dropout(0.1), nn.Dropout(0.1) self.encoder1 = DGCRM( self.num_node, self.input_dim, self.hidden_dim, args["cheb_order"], args["embed_dim"], self.num_layers, ) self.encoder2 = DGCRM( self.num_node, self.input_dim, self.hidden_dim, args["cheb_order"], args["embed_dim"], self.num_layers, ) self.end_conv1 = nn.Conv2d( 1, self.horizon * self.output_dim, (1, self.hidden_dim) ) self.end_conv2 = nn.Conv2d( 1, self.horizon * self.output_dim, (1, self.hidden_dim) ) self.end_conv3 = nn.Conv2d( 1, self.horizon * self.output_dim, (1, self.hidden_dim) ) def forward(self, source): node_embed = self.node_embeddings1 if self.use_day: node_embed = node_embed * self.T_i_D_emb[(source[..., 1] * 288).long()] if self.use_week: node_embed = node_embed * self.D_i_W_emb[source[..., 2].long()] node_embeddings = [node_embed, self.node_embeddings1] source = source[..., 0].unsqueeze(-1) init1 = self.encoder1.init_hidden(source.shape[0]) out, _ = self.encoder1(source, init1, node_embeddings) out = self.drop1(out[:, -1:, :, :]) out1 = self.end_conv1(out) src1 = self.end_conv2(out) src2 = source[:, -self.horizon :, ...] - src1 init2 = self.encoder2.init_hidden(source.shape[0]) out2, _ = self.encoder2(src2, init2, node_embeddings) out2 = self.drop2(out2[:, -1:, :, :]) return out1 + self.end_conv3(out2) class DDGCRNCell(nn.Module): def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim): super().__init__() self.node_num, self.hidden_dim = node_num, dim_out self.gate = DGCN(dim_in + dim_out, 2 * dim_out, cheb_k, embed_dim, node_num) self.update = DGCN(dim_in + dim_out, dim_out, cheb_k, embed_dim, node_num) def forward(self, x, state, node_embeddings): inp = torch.cat((x, state), -1) z_r = torch.sigmoid(self.gate(inp, node_embeddings)) z, r = torch.split(z_r, self.hidden_dim, -1) hc = torch.tanh(self.update(torch.cat((x, z * state), -1), node_embeddings)) return r * state + (1 - r) * hc def init_hidden_state(self, bs): return torch.zeros(bs, self.node_num, self.hidden_dim) class DGCN(nn.Module): def __init__(self, dim_in, dim_out, cheb_k, embed_dim, num_nodes): super().__init__() self.cheb_k, self.embed_dim = cheb_k, embed_dim self.weights_pool = nn.Parameter( torch.FloatTensor(embed_dim, cheb_k, dim_in, dim_out) ) self.weights = nn.Parameter(torch.FloatTensor(cheb_k, dim_in, dim_out)) self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, dim_out)) self.bias = nn.Parameter(torch.FloatTensor(dim_out)) self.fc = nn.Sequential( OrderedDict( [ ("fc1", nn.Linear(dim_in, 16)), ("sigmoid1", nn.Sigmoid()), ("fc2", nn.Linear(16, 2)), ("sigmoid2", nn.Sigmoid()), ("fc3", nn.Linear(2, embed_dim)), ] ) ) # 预注册恒定不变的单位矩阵 self.register_buffer("eye", torch.eye(num_nodes)) def forward(self, x, node_embeddings): supp1 = self.eye.to(node_embeddings[0].device) filt = self.fc(x) nodevec = torch.tanh(node_embeddings[0] * filt) supp2 = self.get_laplacian( F.relu(torch.matmul(nodevec, nodevec.transpose(2, 1))), supp1 ) x_g = torch.stack( [ torch.einsum("nm,bmc->bnc", supp1, x), torch.einsum("bnm,bmc->bnc", supp2, x), ], dim=1, ) weights = torch.einsum("nd,dkio->nkio", node_embeddings[1], self.weights_pool) bias = torch.matmul(node_embeddings[1], self.bias_pool) return torch.einsum("bnki,nkio->bno", x_g.permute(0, 2, 1, 3), weights) + bias @staticmethod def get_laplacian(graph, I, normalize=True): D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5)) return ( torch.matmul(torch.matmul(D_inv, graph), D_inv) if normalize else torch.matmul(torch.matmul(D_inv, graph + I), D_inv) )