import torch import torch.nn as nn import torch.nn.functional as F """ 完整的 EXP 模型,基于 Greenshields 模型反推密度,并结合 LWR 守恒方程物理引导模块,支持仅流量数据输入。 """ class FlowToDensity(nn.Module): """ 根据 Greenshields 基本图反解密度: q = v_f * k * (1 - k / k_j) 通过求解二次方程获得 k。 """ def __init__(self, v_f=15.0, k_j=1.0): super().__init__() self.v_f = nn.Parameter(torch.tensor(v_f), requires_grad=False) self.k_j = nn.Parameter(torch.tensor(k_j), requires_grad=False) def forward(self, q): # q: (B, T, N) a = -self.v_f / self.k_j b = self.v_f c = -q delta = b**2 - 4 * a * c delta = torch.clamp(delta, min=1e-6) sqrt_delta = torch.sqrt(delta) k1 = (-b + sqrt_delta) / (2 * a) k2 = (-b - sqrt_delta) / (2 * a) k = torch.where((k1 > 0) & (k1 < self.k_j), k1, k2) return k class FundamentalDiagram(nn.Module): """ Greenshields 基本图:根据密度计算速度与流量。 """ def __init__(self, v_free=30.0, k_jam=200.0): super().__init__() self.v_free = nn.Parameter(torch.tensor(v_free), requires_grad=True) self.k_jam = nn.Parameter(torch.tensor(k_jam), requires_grad=True) def forward(self, density): speed = self.v_free * (1 - density / self.k_jam) flux = density * speed return speed, flux class ConservationLayer(nn.Module): """ 基于 LWR 方程离散化的守恒层。 """ def __init__(self, dt=1.0, dx=1.0): super().__init__() self.dt = dt self.dx = dx def forward(self, density, flux, adj): # density, flux: (B, N); adj: (N, N) # outflow: 流量从节点流出到邻居 outflow = flux @ adj # inflow: 邻居流量流入该节点 inflow = flux @ adj.T # 更新密度 delta = (inflow - outflow) * (self.dt / self.dx) d_next = density + delta return d_next.clamp(min=0.0) class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim)) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim)) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) self.fundamental = FundamentalDiagram() self.conserve = ConservationLayer() def forward(self, h, density): # h: (B, N, D),density: (B, N) h1 = self.manba1(h) adj = self.graph_constructor() _, flux = self.fundamental(density) density_next = self.conserve(density, flux, adj) h1_updated = h1 + density_next.unsqueeze(-1) h2 = self.gc(h1_updated, adj) h3 = self.manba2(h2) return h3, density_next class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.embed_dim = args.get("embed_dim", 16) self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5)) self.flow_to_density = FlowToDensity( v_f=args.get("v_f", 15.0), k_j=args.get("k_j", 1.0) ) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) self.input_proj = MLP( in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim ) self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.out_proj = MLP( in_dim=self.hidden_dim, hidden_dims=[2 * self.hidden_dim], out_dim=self.horizon * self.output_dim, ) def forward(self, x): """ x: (B, T, N, 3) x[...,0]=flow, x[...,1]=time_in_day, x[...,2]=day_in_week """ x_flow = x[..., 0] x_time = x[..., 1] x_day = x[..., 2] B, T, N = x_flow.shape assert T == self.seq_len x_density = self.flow_to_density(x_flow) # (B, T, N) dens0 = x_density[:, -1, :] # (B, N) x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) t_idx = (x_time[:, -1] * (self.time_slots - 1)).long() d_idx = x_day[:, -1].long() time_emb = self.time_embedding(t_idx) day_emb = self.day_embedding(d_idx) h0 = h0 + time_emb + day_emb h1, dens1 = self.sandwich1(h0, dens0) h1 = h1 + h0 h2, dens2 = self.sandwich2(h1, dens1) out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) return out