import numpy as np import gc import os import torch import h5py from lib.normalization import normalize_dataset def get_dataloader(args, normalizer='std', single=True): # args should now include 'cycle' data = load_st_dataset(args['type'], args['sample']) # [T, N, F] L, N, F = data.shape # compute cycle index cycle_arr = np.arange(L) % args['cycle'] # length-L array # Step 1: sliding windows for X and Y x = add_window_x(data, args['lag'], args['horizon'], single) y = add_window_y(data, args['lag'], args['horizon'], single) # window count = M = L - lag - horizon + 1 M = x.shape[0] # Step 2: time features time_in_day = np.tile( np.array([i % args['steps_per_day'] / args['steps_per_day'] for i in range(L)]), (N, 1) ).T.reshape(L, N, 1) day_in_week = np.tile( np.array([(i // args['steps_per_day']) % args['days_per_week'] for i in range(L)]), (N, 1) ).T.reshape(L, N, 1) x_day = add_window_x(time_in_day, args['lag'], args['horizon'], single) x_week = add_window_x(day_in_week, args['lag'], args['horizon'], single) x = np.concatenate([x, x_day, x_week], axis=-1) # del x_day, x_week # gc.collect() # Step 3: extract cycle index per window: take value at end of sequence cycle_win = np.array([cycle_arr[i + args['lag']] for i in range(M)]) # shape [M] # Step 4: split into train/val/test if args['test_ratio'] > 1: x_train, x_val, x_test = split_data_by_days(x, args['val_ratio'], args['test_ratio']) y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio']) c_train, c_val, c_test = split_data_by_days(cycle_win, args['val_ratio'], args['test_ratio']) else: x_train, x_val, x_test = split_data_by_ratio(x, args['val_ratio'], args['test_ratio']) y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio']) c_train, c_val, c_test = split_data_by_ratio(cycle_win, args['val_ratio'], args['test_ratio']) # del x, y, cycle_win # gc.collect() # Step 5: normalization on X only scaler = normalize_dataset(x_train[..., :args['input_dim']], normalizer, args['column_wise']) x_train[..., :args['input_dim']] = scaler.transform(x_train[..., :args['input_dim']]) x_val[..., :args['input_dim']] = scaler.transform(x_val[..., :args['input_dim']]) x_test[..., :args['input_dim']] = scaler.transform(x_test[..., :args['input_dim']]) # add time features to Y y_day = add_window_y(time_in_day, args['lag'], args['horizon'], single) y_week = add_window_y(day_in_week, args['lag'], args['horizon'], single) y = np.concatenate([y, y_day, y_week], axis=-1) # del y_day, y_week, time_in_day, day_in_week # gc.collect() # split Y time-augmented if args['test_ratio'] > 1: y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio']) else: y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio']) # del y # Step 6: create dataloaders including cycle index train_loader = data_loader_with_cycle(x_train, y_train, c_train, args['batch_size'], shuffle=True, drop_last=True) val_loader = data_loader_with_cycle(x_val, y_val, c_val, args['batch_size'], shuffle=False, drop_last=True) test_loader = data_loader_with_cycle(x_test, y_test, c_test, args['batch_size'], shuffle=False, drop_last=False) return train_loader, val_loader, test_loader, scaler def data_loader_with_cycle(X, Y, C, batch_size, shuffle=True, drop_last=True): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') X_t = torch.tensor(X, dtype=torch.float32, device=device) Y_t = torch.tensor(Y, dtype=torch.float32, device=device) C_t = torch.tensor(C, dtype=torch.long, device=device).unsqueeze(-1) # [B,1] dataset = torch.utils.data.TensorDataset(X_t, Y_t, C_t) loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) return loader # Rest of the helper functions (load_st_dataset, split_data..., add_window_x/y) unchanged def load_st_dataset(dataset, sample): # output B, N, D match dataset: case 'PEMSD3': data_path = os.path.join('./data/PEMS03/PEMS03.npz') data = np.load(data_path)['data'][:, :, 0] # only the first dimension, traffic flow data case 'PEMSD4': data_path = os.path.join('./data/PEMS04/PEMS04.npz') data = np.load(data_path)['data'][:, :, 0] # only the first dimension, traffic flow data case 'PEMSD7': data_path = os.path.join('./data/PEMS07/PEMS07.npz') data = np.load(data_path)['data'][:, :, 0] # only the first dimension, traffic flow data case 'PEMSD8': data_path = os.path.join('./data/PEMS08/PEMS08.npz') data = np.load(data_path)['data'][:, :, 0] # only the first dimension, traffic flow data case 'PEMSD7(L)': data_path = os.path.join('./data/PEMS07(L)/PEMS07L.npz') data = np.load(data_path)['data'][:, :, 0] # only the first dimension, traffic flow data case 'PEMSD7(M)': data_path = os.path.join('./data/PEMS07(M)/V_228.csv') data = np.genfromtxt(data_path, delimiter=',') # Read CSV directly with numpy case 'METR-LA': data_path = os.path.join('./data/METR-LA/METR.h5') with h5py.File(data_path, 'r') as f: # Use h5py to handle HDF5 files without pandas data = np.array(f['data']) case 'BJ': data_path = os.path.join('./data/BJ/BJ500.csv') data = np.genfromtxt(data_path, delimiter=',', skip_header=1) # Skip header if present case 'Hainan': data_path = os.path.join('./data/Hainan/Hainan.npz') data = np.load(data_path)['data'][:, :, 0] case 'SD': data_path = os.path.join('./data/SD/data.npz') data = np.load(data_path)["data"][:, :, 0].astype(np.float32) case _: raise ValueError(f"Unsupported dataset: {dataset}") # Ensure data shape compatibility if len(data.shape) == 2: data = np.expand_dims(data, axis=-1) print('加载 %s 数据集中... ' % dataset) return data[::sample] def split_data_by_days(data, val_days, test_days, interval=30): t = int((24 * 60) / interval) test_data = data[-t * int(test_days):] val_data = data[-t * int(test_days + val_days):-t * int(test_days)] train_data = data[:-t * int(test_days + val_days)] return train_data, val_data, test_data def split_data_by_ratio(data, val_ratio, test_ratio): data_len = data.shape[0] test_data = data[-int(data_len * test_ratio):] val_data = data[-int(data_len * (test_ratio + val_ratio)):-int(data_len * test_ratio)] train_data = data[:-int(data_len * (test_ratio + val_ratio))] return train_data, val_data, test_data def data_loader(X, Y, batch_size, shuffle=True, drop_last=True): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') X = torch.tensor(X, dtype=torch.float32, device=device) Y = torch.tensor(Y, dtype=torch.float32, device=device) data = torch.utils.data.TensorDataset(X, Y) dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) return dataloader def add_window_x(data, window=3, horizon=1, single=False): """ Generate windowed X values from the input data. :param data: Input data, shape [B, ...] :param window: Size of the sliding window :param horizon: Horizon size :param single: If True, generate single-step windows, else multi-step :return: X with shape [B, W, ...] """ length = len(data) end_index = length - horizon - window + 1 x = [] # Sliding windows index = 0 while index < end_index: x.append(data[index:index + window]) index += 1 return np.array(x) def add_window_y(data, window=3, horizon=1, single=False): """ Generate windowed Y values from the input data. :param data: Input data, shape [B, ...] :param window: Size of the sliding window :param horizon: Horizon size :param single: If True, generate single-step windows, else multi-step :return: Y with shape [B, H, ...] """ length = len(data) end_index = length - horizon - window + 1 y = [] # Horizon values index = 0 while index < end_index: if single: y.append(data[index + window + horizon - 1:index + window + horizon]) else: y.append(data[index + window:index + window + horizon]) index += 1 return np.array(y) if __name__ == '__main__': res = load_st_dataset('SD', 1) k = 1