import torch import torch.nn as nn import torch.nn.functional as F """ 使用多层感知机替换输入输出的proj层 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.embed_dim = args.get("embed_dim", 16) # 替换为MLP: input_proj(seq_len -> hidden_dim -> hidden_dim) self.input_proj = MLP(self.seq_len, [self.hidden_dim], self.hidden_dim) self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 替换为MLP: out_proj(hidden_dim -> 2*hidden_dim -> horizon*output_dim) self.out_proj = MLP( self.hidden_dim, [2 * self.hidden_dim], self.horizon * self.output_dim ) def forward(self, x): # x: (B, T, N, D_total) x_main = x[..., 0] # (B, T, N) B, T, N = x_main.shape assert T == self.seq_len # (B, T, N) -> (B, N, T) -> (B*N, T) -> MLP -> (B, N, hidden_dim) x_flat = x_main.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # MLP输出 -> (B, N, H*D_out) out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim) return out