import torch import torch.nn as nn import torch.nn.functional as F class DynamicTanh(nn.Module): """ Dynamic tanh activation with learnable scaling (alpha) and affine transformation (weight, bias). """ def __init__(self, normalized_shape, channels_last=True, alpha_init_value=0.5): super().__init__() self.normalized_shape = normalized_shape self.alpha_init_value = alpha_init_value self.channels_last = channels_last # learnable scale for tanh self.alpha = nn.Parameter(torch.full((1,), alpha_init_value)) # affine parameters self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) def forward(self, x): # scaled tanh x = torch.tanh(self.alpha * x) # affine transform if self.channels_last: x = x * self.weight + self.bias else: # channels_first: assume shape (B, C, H, W) x = x * self.weight[:, None, None] + self.bias[:, None, None] return x def extra_repr(self): return f"normalized_shape={self.normalized_shape}, alpha_init_value={self.alpha_init_value}, channels_last={self.channels_last}" class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): """ Multi-head attention + feed-forward network with DynamicTanh replacing LayerNorm. """ def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) # replace LayerNorm with DynamicTanh self.norm1 = DynamicTanh(normalized_shape=input_dim, channels_last=True) self.norm2 = DynamicTanh(normalized_shape=input_dim, channels_last=True) def forward(self, x): # self-attention res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) # feed-forward res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers.append(nn.Linear(dims[i], dims[i + 1])) layers.append(activation()) layers.append(nn.Linear(dims[-2], dims[-1])) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.embed_dim = args.get("embed_dim", 16) # discrete time embeddings self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # input projection for flow history self.input_proj = MLP( in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim ) # two Sandwich blocks self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # output projection self.out_proj = MLP( in_dim=self.hidden_dim, hidden_dims=[2 * self.hidden_dim], out_dim=self.horizon * self.output_dim, ) def forward(self, x): """ x: (B, T, N, D_total) where x[...,0]=flow, x[...,1]=time_in_day (scaled), x[...,2]=day_in_week """ x_flow = x[..., 0] # (B, T, N) x_time = x[..., 1] # (B, T, N) x_day = x[..., 2] # (B, T, N) B, T, N = x_flow.shape assert T == self.seq_len, "Input sequence length mismatch" # project flow history x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # time embeddings at last step t_idx = (x_time[:, -1, :] * (self.time_slots - 1)).long() d_idx = x_day[:, -1, :].long() time_emb = self.time_embedding(t_idx) day_emb = self.day_embedding(d_idx) # inject time features h0 = h0 + time_emb + day_emb # Sandwich + residuals h1 = self.sandwich1(h0) + h0 h2 = self.sandwich2(h1) # output out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) return out # Example usage: # args = {'horizon':12, 'output_dim':1, 'num_nodes':170} # model = EXP(args) # print(model)