data: type: 'PEMSD3' num_nodes: 358 lag: 12 horizon: 12 val_ratio: 0.2 test_ratio: 0.2 tod: false normalizer: std column_wise: false default_graph: true add_time_in_day: true add_day_in_week: true steps_per_day: 288 days_per_week: 7 sample: null model: type: 'STEP' dataset_name: 'PEMS03' input_dim: 1 output_dim: 1 num_nodes: 358 lag: 12 horizon: 12 # TSFormer参数 tsformer_args: patch_size: 12 in_channel: 1 embed_dim: 96 num_heads: 4 mlp_ratio: 4 dropout: 0.1 num_token: 4032 mask_ratio: 0.75 encoder_depth: 4 decoder_depth: 1 mode: "forecasting" # GraphWaveNet后端参数 backend_args: num_nodes: 358 support_len: 2 dropout: 0.3 gcn_bool: true addaptadj: true aptinit: null in_dim: 2 out_dim: 12 residual_channels: 32 dilation_channels: 32 skip_channels: 256 end_channels: 512 kernel_size: 2 blocks: 4 layers: 2 # 离散图学习参数 dgl_args: dataset_name: 'PEMS03' k: 10 input_seq_len: 12 output_seq_len: 12 train: loss_func: mae seed: 10 batch_size: 8 epochs: 100 lr_init: 0.002 weight_decay: 1.0e-5 lr_decay: true lr_decay_rate: 0.5 lr_decay_step: [1, 18, 36, 54, 72] early_stop: true early_stop_patience: 15 grad_norm: true max_grad_norm: 3.0 real_value: true test: mae_thresh: null mape_thresh: 0.0 log: log_step: 200 plot: false