import torch import torch.nn as nn import torch.nn.functional as F """ 添加时间嵌入 + 引入图注意力网络(GAT) """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj # 原来的 GCN 块保留备用 class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) # ★★ GAT 部分:从 LeronQ/GCN_predict-Pytorch 改写而来 ★★ class GraphAttentionLayer(nn.Module): def __init__(self, in_c, out_c): super().__init__() self.W = nn.Linear(in_c, out_c, bias=False) self.b = nn.Parameter(torch.Tensor(out_c)) nn.init.xavier_uniform_(self.W.weight) nn.init.zeros_(self.b) def forward(self, h, adj): # h: [B, N, C_in], adj: [N, N] Wh = self.W(h) # [B, N, C_out] # 计算注意力得分 score = torch.bmm(Wh, Wh.transpose(1, 2)) * adj.unsqueeze(0) # [B, N, N] score = score.masked_fill(score == 0, -1e16) alpha = F.softmax(score, dim=-1) # [B, N, N] # 加权求和并加偏置 out = torch.bmm(alpha, Wh) + self.b # [B, N, C_out] return F.relu(out) class GraphAttentionBlock(nn.Module): def __init__(self, input_dim, output_dim, n_heads=4): super().__init__() # 多头注意力 self.heads = nn.ModuleList([GraphAttentionLayer(input_dim, output_dim) for _ in range(n_heads)]) # 合并后再做一次线性映射 self.out_att = GraphAttentionLayer(output_dim * n_heads, output_dim) self.act = nn.ReLU() def forward(self, x, adj): # x: [B, N, C], adj: [N, N] # 并行多头,然后拼接 h_cat = torch.cat([head(x, adj) for head in self.heads], dim=-1) # [B, N, output_dim * n_heads] h_out = self.out_att(h_cat, adj) # [B, N, output_dim] return self.act(h_out) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) # ★★ 替换为 GATBlock ★★ self.gc = GraphAttentionBlock(hidden_dim, hidden_dim, n_heads=4) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): h1 = self.manba1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.manba2(h2) return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims)-2): layers += [nn.Linear(dims[i], dims[i+1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # ==== 新增:离散时间嵌入 ==== self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # 输入投影(仅 flow) self.input_proj = MLP( in_dim = self.seq_len, hidden_dims = [self.hidden_dim], out_dim = self.hidden_dim ) # 两个 SandwichBlock(已替换为 GAT) self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出投影 self.out_proj = MLP( in_dim = self.hidden_dim, hidden_dims = [2 * self.hidden_dim], out_dim = self.horizon * self.output_dim ) def forward(self, x): """ x: (B, T, N, D_total) D_total >= 3, x[...,0]=flow, x[...,1]=time_in_day, x[...,2]=day_in_week """ x_flow = x[..., 0] # (B, T, N) x_time = x[..., 1] # (B, T, N) x_day = x[..., 2] # (B, T, N) B, T, N = x_flow.shape assert T == self.seq_len # 1) 投影流量历史 x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # 2) 取最后一步的时间索引并嵌入 t_idx = (x_time[:, -1, :,] * (self.time_slots - 1)).long() d_idx = x_day[:, -1, :,].long() time_emb = self.time_embedding(t_idx) day_emb = self.day_embedding(d_idx) # 3) 注入时间信息 h0 = h0 + time_emb + day_emb # 4) Sandwich + 残差 h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # 5) 输出 out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3) return out