basic: dataset: AirQuality device: cuda:0 mode: train model: MTGNN seed: 2023 data: batch_size: 64 column_wise: false days_per_week: 7 horizon: 24 input_dim: 6 lag: 24 normalizer: std num_nodes: 35 steps_per_day: 24 test_ratio: 0.2 val_ratio: 0.2 model: gcn_true: True # 是否使用图卷积网络 (bool) buildA_true: True # 是否动态构建邻接矩阵 (bool) subgraph_size: 20 # 子图大小 (int) num_nodes: 35 # 节点数量 (int) node_dim: 40 # 节点嵌入维度 (int) dilation_exponential: 1 # 膨胀卷积指数 (int) conv_channels: 32 # 卷积通道数 (int) residual_channels: 32 # 残差通道数 (int) skip_channels: 64 # 跳跃连接通道数 (int) end_channels: 128 # 输出层通道数 (int) seq_len: 24 # 输入序列长度 (int) in_dim: 6 # 输入特征维度 (int) out_len: 24 # 输出序列长度 (int) out_dim: 6 # 输出预测维度 (int) layers: 3 # 模型层数 (int) propalpha: 0.05 # 图传播参数alpha (float) tanhalpha: 3 # tanh激活参数alpha (float) layer_norm_affline: True # 层归一化是否使用affine变换 (bool) gcn_depth: 2 # 图卷积深度 (int) dropout: 0.3 # dropout率 (float) predefined_A: null # 预定义邻接矩阵 (optional, None) static_feat: null # 静态特征 (optional, None) train: batch_size: 64 debug: false early_stop: true early_stop_patience: 15 epochs: 100 grad_norm: false log_step: 1000 loss_func: mae lr_decay: true lr_decay_rate: 0.3 lr_decay_step: 5,20,40,70 lr_init: 0.003 mae_thresh: None mape_thresh: 0.001 max_grad_norm: 5 output_dim: 6 plot: false real_value: true weight_decay: 0