import torch import torch.nn as nn import torch.nn.functional as F class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class TransformerBlock(nn.Module): def __init__(self, embed_dim, num_heads=4, dim_feedforward=None): super().__init__() # feedforward dimension defaults to 2*embed_dim if not provided ff_dim = dim_feedforward if dim_feedforward is not None else 2 * embed_dim self.layer = nn.TransformerEncoderLayer( d_model=embed_dim, nhead=num_heads, dim_feedforward=ff_dim, batch_first=True ) def forward(self, x): # x: (batch, seq_len, embed_dim) return self.layer(x) class SandwichBlock(nn.Module): def __init__(self, num_nodes, embed_dim, hidden_dim, num_heads=4): super().__init__() self.transformer1 = TransformerBlock(hidden_dim, num_heads=num_heads, dim_feedforward=hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.transformer2 = TransformerBlock(hidden_dim, num_heads=num_heads, dim_feedforward=hidden_dim * 2) def forward(self, h): # h: (batch, num_nodes, hidden_dim) h1 = self.transformer1(h) adj = self.graph_constructor() h2 = self.gc(h1, adj) h3 = self.transformer2(h2) return h3 class MLP(nn.Module): def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU): super().__init__() dims = [in_dim] + hidden_dims + [out_dim] layers = [] for i in range(len(dims) - 2): layers += [nn.Linear(dims[i], dims[i + 1]), activation()] layers += [nn.Linear(dims[-2], dims[-1])] self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # time embeddings self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5)) self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim) self.day_embedding = nn.Embedding(7, self.hidden_dim) # input projection self.input_proj = MLP( in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim ) # two Sandwich blocks with transformer self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # output projection self.out_proj = MLP( in_dim=self.hidden_dim, hidden_dims=[2 * self.hidden_dim], out_dim=self.horizon * self.output_dim ) def forward(self, x): # x: (B, T, N, D_total) x_flow = x[..., 0] x_time = x[..., 1] x_day = x[..., 2] B, T, N = x_flow.shape assert T == self.seq_len # project flow history x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # time embeddings t_idx = (x_time[:, -1, :] * (self.time_slots - 1)).long() d_idx = x_day[:, -1, :].long() time_emb = self.time_embedding(t_idx) day_emb = self.day_embedding(d_idx) # inject embeddings h0 = h0 + time_emb + day_emb # Sandwich blocks with residuals h1 = self.sandwich1(h0) h1 = h1 + h0 h2 = self.sandwich2(h1) # output out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) return out