import torch import torch.nn as nn import torch.nn.functional as F """ 含残差的双层 空间->时间->空间 结构模型 无效 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) self.nodevec2 = nn.Parameter( torch.randn(node_num, embed_dim), requires_grad=True ) def forward(self): # 构造动态邻接矩阵 (N, N) adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = input_dim == output_dim if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # x: (B, N, C) res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention( embed_dim=input_dim, num_heads=4, batch_first=True ) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim), ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, C) 当 N 视为时间序列长度 res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): """ 空间 -> 时间 -> 空间 三明治结构 输入/输出: (B, N, hidden_dim) """ def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc1 = GraphConvBlock(hidden_dim, hidden_dim) self.manba = MANBA_Block(hidden_dim, hidden_dim * 2) self.gc2 = GraphConvBlock(hidden_dim, hidden_dim) def forward(self, h): # 第一步:空间卷积 adj = self.graph_constructor() h1 = self.gc1(h, adj) # 第二步:时间注意力 h2 = self.manba(h1) # 第三步:空间卷积 h3 = self.gc2(h2, adj) return h3 class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args["horizon"] self.output_dim = args["output_dim"] self.seq_len = args.get("in_len", 12) self.hidden_dim = args.get("hidden_dim", 64) self.num_nodes = args["num_nodes"] self.embed_dim = args.get("embed_dim", 16) # 输入映射 self.input_proj = nn.Linear(self.seq_len, self.hidden_dim) # 两层 空间-时间-空间 三明治块 self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出映射 self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim) def forward(self, x): # x: (B, T, N, D) x_main = x[..., 0] # (B, T, N) B, T, N = x_main.shape assert T == self.seq_len # 投影到隐藏维 (B,N,hidden) x_flat = x_main.permute(0, 2, 1).reshape(B * N, T) h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim) # 第一层三明治 + 残差 h1 = self.sandwich1(h0) h1 = h1 + h0 # 第二层三明治 h2 = self.sandwich2(h1) # 输出 out = self.out_proj(h2) # (B, N, H*D_out) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim) return out