basic: dataset: AirQuality device: cuda:0 mode: train model: GWN seed: 2023 data: batch_size: 16 column_wise: false days_per_week: 7 horizon: 24 input_dim: 6 lag: 24 normalizer: std num_nodes: 35 steps_per_day: 24 test_ratio: 0.2 val_ratio: 0.2 model: addaptadj: true aptinit: batch_size: 16 blocks: 4 dilation_channels: 32 dropout: 0.3 end_channels: 512 gcn_bool: true in_dim: 2 input_dim: 6 kernel_size: 2 layers: 2 out_dim: 12 output_dim: 6 residual_channels: 32 skip_channels: 256 supports: train: batch_size: 16 debug: false early_stop: true early_stop_patience: 15 epochs: 300 grad_norm: false log_step: 100 loss_func: mae lr_decay: false lr_decay_rate: 0.3 lr_decay_step: 5,20,40,70 lr_init: 0.003 mae_thresh: mape_thresh: 0.0 max_grad_norm: 5 output_dim: 6 plot: false real_value: true seed: 10 weight_decay: 0