import torch import torch.nn as nn import torch.nn.functional as F """ 含时间/空间额外特征的双层 时间->空间->时间 三明治结构模型 使用 x[...,0] 主通道,x[...,1] time_in_day,x[...,2] day_in_week 通过独立投影融合三路信息 无改进 """ class DynamicGraphConstructor(nn.Module): def __init__(self, node_num, embed_dim): super().__init__() self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True) def forward(self): # 构造动态邻接矩阵 (N, N) adj = torch.matmul(self.nodevec1, self.nodevec2.T) adj = F.relu(adj) adj = F.softmax(adj, dim=-1) return adj class GraphConvBlock(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.theta = nn.Linear(input_dim, output_dim) self.residual = (input_dim == output_dim) if not self.residual: self.res_proj = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # x: (B, N, C) res = x x = torch.matmul(adj, x) x = self.theta(x) x = x + (res if self.residual else self.res_proj(res)) return F.relu(x) class MANBA_Block(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True) self.ffn = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, input_dim) ) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) def forward(self, x): # x: (B, N, C) 视 N 维为时间序列长度 res = x x_attn, _ = self.attn(x, x, x) x = self.norm1(res + x_attn) res2 = x x_ffn = self.ffn(x) x = self.norm2(res2 + x_ffn) return x class SandwichBlock(nn.Module): """ 时间 -> 空间 -> 时间 三明治结构 输入/输出: (B, N, hidden_dim) """ def __init__(self, num_nodes, embed_dim, hidden_dim): super().__init__() self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2) self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim) self.gc = GraphConvBlock(hidden_dim, hidden_dim) self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2) def forward(self, h): # h: (B, N, hidden_dim) # 第一步:时间注意力 h1 = self.manba1(h) # 第二步:空间卷积 adj = self.graph_constructor() h2 = self.gc(h1, adj) # 第三步:时间注意力 h3 = self.manba2(h2) return h3 class EXP(nn.Module): def __init__(self, args): super().__init__() self.horizon = args['horizon'] self.output_dim = args['output_dim'] self.seq_len = args.get('in_len', 12) self.hidden_dim = args.get('hidden_dim', 64) self.num_nodes = args['num_nodes'] self.embed_dim = args.get('embed_dim', 16) # 对三路输入分别投影到隐藏维度 self.main_proj = nn.Linear(self.seq_len, self.hidden_dim) self.time_proj = nn.Linear(self.seq_len, self.hidden_dim) self.week_proj = nn.Linear(self.seq_len, self.hidden_dim) # 双层 时间->空间->时间 三明治块 self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim) # 输出映射 self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim) def forward(self, x): # x: (B, T, N, D_total) x_main = x[..., 0] # (B, T, N) x_time = x[..., 1] # (B, T, N) x_week = x[..., 2] # (B, T, N) B, T, N = x_main.shape assert T == self.seq_len # 将三路特征分别映射后叠加 x_main_flat = x_main.permute(0, 2, 1).reshape(B * N, T) h_main = self.main_proj(x_main_flat).view(B, N, self.hidden_dim) x_time_flat = x_time.permute(0, 2, 1).reshape(B * N, T) h_time = self.time_proj(x_time_flat).view(B, N, self.hidden_dim) x_week_flat = x_week.permute(0, 2, 1).reshape(B * N, T) h_week = self.week_proj(x_week_flat).view(B, N, self.hidden_dim) # 初始隐藏表示,融合三路信息 h0 = h_main + h_time + h_week # 第一层三明治 + 残差 h1 = self.sandwich1(h0) h1 = h1 + h0 # 第二层三明治 h2 = self.sandwich2(h1) # 输出 out = self.out_proj(h2) out = out.view(B, N, self.horizon, self.output_dim) out = out.permute(0, 2, 1, 3) # (B, horizon, N, D_out) return out # 示例测试 # args = {'horizon':12,'output_dim':1,'in_len':12,'hidden_dim':64,'num_nodes':307,'embed_dim':16} # model = EXP(args) # x = torch.randn(16, 12, 307, 3) # print(model(x).shape) # (16,12,307,1)