209 lines
10 KiB
Python
209 lines
10 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
||
from einops import rearrange
|
||
from model.AEPSA.normalizer import GumbelSoftmax
|
||
from model.AEPSA.reprogramming import ReprogrammingLayer
|
||
import torch.nn.functional as F
|
||
|
||
# 基于动态图增强的时空序列预测模型实现
|
||
|
||
class DynamicGraphEnhancer(nn.Module):
|
||
"""动态图增强编码器"""
|
||
def __init__(self, num_nodes, in_dim, embed_dim=10):
|
||
super().__init__()
|
||
self.num_nodes = num_nodes # 节点个数
|
||
self.embed_dim = embed_dim # 节点嵌入维度
|
||
|
||
self.node_embeddings = nn.Parameter(torch.randn(num_nodes, embed_dim), requires_grad=True) # 节点嵌入参数
|
||
|
||
self.feature_transform = nn.Sequential( # 特征转换网络
|
||
nn.Linear(in_dim, 16),
|
||
nn.Sigmoid(),
|
||
nn.Linear(16, 2),
|
||
nn.Sigmoid(),
|
||
nn.Linear(2, embed_dim)
|
||
)
|
||
|
||
self.register_buffer("eye", torch.eye(num_nodes)) # 注册单位矩阵
|
||
|
||
def get_laplacian(self, graph, I, normalize=True):
|
||
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5)) # 度矩阵的逆平方根
|
||
D_inv[torch.isinf(D_inv)] = 0.0 # 处理零除问题
|
||
if normalize:
|
||
return torch.matmul(torch.matmul(D_inv, graph), D_inv) # 归一化拉普拉斯矩阵
|
||
else:
|
||
return torch.matmul(torch.matmul(D_inv, graph + I), D_inv) # 带自环的归一化拉普拉斯矩阵
|
||
|
||
def forward(self, X):
|
||
"""生成动态拉普拉斯矩阵"""
|
||
batch_size = X.size(0) # 批次大小
|
||
laplacians = [] # 存储各批次的拉普拉斯矩阵
|
||
I = self.eye.to(X.device) # 移动单位矩阵到目标设备
|
||
|
||
for b in range(batch_size):
|
||
filt = self.feature_transform(X[b]) # 特征转换
|
||
nodevec = torch.tanh(self.node_embeddings * filt) # 计算节点嵌入
|
||
adj = F.relu(torch.matmul(nodevec, nodevec.transpose(0, 1))) # 计算邻接矩阵
|
||
laplacian = self.get_laplacian(adj, I) # 计算拉普拉斯矩阵
|
||
laplacians.append(laplacian)
|
||
return torch.stack(laplacians, dim=0) # 堆叠并返回
|
||
|
||
class GraphEnhancedEncoder(nn.Module):
|
||
"""图增强编码器"""
|
||
def __init__(self, K=3, in_dim=64, hidden_dim=32, num_nodes=325, embed_dim=10, device='cpu',
|
||
temporal_dim=12, num_features=1):
|
||
super().__init__()
|
||
self.K = K # Chebyshev多项式阶数
|
||
self.in_dim = in_dim # 输入特征维度
|
||
self.hidden_dim = hidden_dim # 隐藏层维度
|
||
self.device = device # 运行设备
|
||
self.temporal_dim = temporal_dim # 时间序列长度
|
||
self.num_features = num_features # 特征通道数量
|
||
|
||
self.input_projection = nn.Sequential( # 输入投影层
|
||
nn.Conv2d(num_features, 16, kernel_size=(1, 3), padding=(0, 1)),
|
||
nn.ReLU(),
|
||
nn.Conv2d(16, in_dim, kernel_size=(1, temporal_dim)),
|
||
nn.ReLU()
|
||
)
|
||
|
||
self.graph_enhancer = DynamicGraphEnhancer(num_nodes, in_dim, embed_dim) # 动态图增强器
|
||
self.alpha = nn.Parameter(torch.randn(K + 1, 1)) # 谱系数
|
||
self.W = nn.ParameterList([nn.Parameter(torch.randn(in_dim, hidden_dim)) for _ in range(K + 1)]) # 传播权重
|
||
self.to(device) # 移动到指定设备
|
||
|
||
def chebyshev_polynomials(self, L_tilde, X):
|
||
"""计算Chebyshev多项式展开"""
|
||
T_k_list = [X] # T_0(X) = X
|
||
if self.K >= 1:
|
||
T_k_list.append(torch.matmul(L_tilde, X)) # T_1(X) = L_tilde * X
|
||
for k in range(2, self.K + 1):
|
||
T_k_list.append(2 * torch.matmul(L_tilde, T_k_list[-1]) - T_k_list[-2]) # 递推计算
|
||
return T_k_list # 返回多项式列表
|
||
|
||
def forward(self, X):
|
||
"""输入特征[B,N,C,T],返回增强特征[B,N,hidden_dim*(K+1)]"""
|
||
batch_size = X.size(0) # 批次大小
|
||
num_nodes = X.size(1) # 节点数量
|
||
|
||
x = X.permute(0, 2, 1, 3) # [B,C,N,T]
|
||
x_proj = self.input_projection(x).squeeze(-1) # [B,in_dim,N]
|
||
x_proj = x_proj.permute(0, 2, 1) # [B,N,in_dim]
|
||
|
||
enhanced_features = [] # 存储增强特征
|
||
laplacians = self.graph_enhancer(x_proj) # 生成动态拉普拉斯矩阵
|
||
|
||
for b in range(batch_size):
|
||
L = laplacians[b] # 当前批次的拉普拉斯矩阵
|
||
|
||
# 特征值缩放
|
||
try:
|
||
lambda_max = torch.linalg.eigvalsh(L).max().real # 最大特征值
|
||
lambda_max = 1.0 if lambda_max < 1e-6 else lambda_max # 防止除零
|
||
L_tilde = (2.0 / lambda_max) * L - torch.eye(L.size(0), device=L.device) # 归一化拉普拉斯
|
||
except:
|
||
L_tilde = torch.eye(num_nodes, device=X.device) # 异常处理
|
||
|
||
# 计算展开并应用权重
|
||
T_k_list = self.chebyshev_polynomials(L_tilde, x_proj[b]) # 计算Chebyshev多项式
|
||
H_list = [torch.matmul(T_k_list[k], self.W[k]) for k in range(self.K + 1)] # 应用权重
|
||
X_enhanced = torch.cat(H_list, dim=-1) # 拼接特征
|
||
enhanced_features.append(X_enhanced)
|
||
|
||
return torch.stack(enhanced_features, dim=0) # 堆叠返回[B,N,hidden_dim*(K+1)],每个节点在每个k阶下的切比雪夫特征
|
||
|
||
class AEPSA(nn.Module):
|
||
"""自适应特征投影时空自注意力模型"""
|
||
def __init__(self, configs):
|
||
super(AEPSA, self).__init__()
|
||
self.device = configs['device'] # 运行设备
|
||
self.pred_len = configs['pred_len'] # 预测序列长度
|
||
self.seq_len = configs['seq_len'] # 输入序列长度
|
||
self.patch_len = configs['patch_len'] # 补丁长度
|
||
self.input_dim = configs['input_dim'] # 输入特征维度
|
||
self.stride = configs['stride'] # 步长
|
||
self.dropout = configs['dropout'] # Dropout概率
|
||
self.gpt_layers = configs['gpt_layers'] # 使用的GPT2层数
|
||
self.d_ff = configs['d_ff'] # 前馈网络隐藏层维度
|
||
self.gpt_path = configs['gpt_path'] # 预训练GPT2模型路径
|
||
self.num_nodes = configs.get('num_nodes', 325) # 节点数量
|
||
|
||
self.word_choice = GumbelSoftmax(configs['word_num']) # 词汇选择层
|
||
|
||
self.d_model = configs['d_model'] # 模型维度
|
||
self.n_heads = configs['n_heads'] # 注意力头数量
|
||
self.d_keys = None # 键维度
|
||
self.d_llm = 768 # GPT2隐藏层维度
|
||
|
||
self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2) # 补丁数量
|
||
self.head_nf = self.d_ff * self.patch_nums # 头特征维度
|
||
|
||
# 初始化GPT2模型
|
||
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True) # GPT2模型
|
||
self.gpts.h = self.gpts.h[:self.gpt_layers] # 截取指定层数
|
||
self.gpts.apply(self.reset_parameters) # 重置参数
|
||
|
||
self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device) # 词嵌入权重
|
||
self.vocab_size = self.word_embeddings.shape[0] # 词汇表大小
|
||
self.mapping_layer = nn.Linear(self.vocab_size, 1) # 映射层
|
||
self.reprogramming_layer = ReprogrammingLayer(self.d_model + configs.get('graph_hidden_dim', 32) * (configs.get('chebyshev_order', 3) + 1), self.n_heads, self.d_keys, self.d_llm) # 重编程层
|
||
|
||
# 初始化图增强编码器
|
||
self.graph_encoder = GraphEnhancedEncoder(
|
||
K=configs.get('chebyshev_order', 3), # Chebyshev多项式阶数
|
||
in_dim=self.d_model, # 输入特征维度
|
||
hidden_dim=configs.get('graph_hidden_dim', 32), # 隐藏层维度
|
||
num_nodes=self.num_nodes, # 节点数量
|
||
embed_dim=configs.get('graph_embed_dim', 10), # 节点嵌入维度
|
||
device=self.device, # 运行设备
|
||
temporal_dim=self.seq_len, # 时间序列长度
|
||
num_features=self.input_dim # 特征通道数
|
||
)
|
||
|
||
self.graph_projection = nn.Linear( # 图特征投影层,每一k阶的切比雪夫权重映射到隐藏维度
|
||
configs.get('graph_hidden_dim', 32) * (configs.get('chebyshev_order', 3) + 1), # 输入维度
|
||
self.d_model # 输出维度
|
||
)
|
||
|
||
self.out_mlp = nn.Sequential(
|
||
nn.Linear(self.d_llm, 128),
|
||
nn.ReLU(),
|
||
nn.Linear(128, self.pred_len)
|
||
)
|
||
|
||
# 设置参数可训练性 wps=word position embeddings
|
||
for name, param in self.gpts.named_parameters():
|
||
param.requires_grad = 'wpe' in name
|
||
|
||
def reset_parameters(self, module):
|
||
if hasattr(module, 'weight') and module.weight is not None:
|
||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
||
if hasattr(module, 'bias') and module.bias is not None:
|
||
torch.nn.init.zeros_(module.bias)
|
||
|
||
def forward(self, x):
|
||
# 数据处理
|
||
x = x[..., :1] # [B,T,N,1]
|
||
x_enc = rearrange(x, 'b t n c -> b n c t') # [B,N,1,T]
|
||
|
||
# 图编码
|
||
H_t = self.graph_encoder(x_enc) # [B,N,1,T] -> [B, N, hidden_dim*(K+1)]
|
||
X_t_1 = self.graph_projection(H_t) # [B,N,d_model]
|
||
X_enc = torch.cat([H_t, X_t_1], dim = -1) # [B, N, d_model + hidden_dim*(K+1)]
|
||
|
||
# 词嵌入处理
|
||
self.mapping_layer(self.word_embeddings.permute(1, 0)).permute(1, 0)
|
||
masks = self.word_choice(self.mapping_layer.weight.data.permute(1,0)) # [d_llm,1]
|
||
source_embeddings = self.word_embeddings[masks==1] # [selected_words,d_llm]
|
||
|
||
# 重编程与预测
|
||
X_enc = self.reprogramming_layer(X_enc, source_embeddings, source_embeddings)
|
||
X_enc = self.gpts(inputs_embeds=X_enc).last_hidden_state # [B,N,d_llm]
|
||
dec_out = self.out_mlp(X_enc) # [B,N,pred_len]
|
||
|
||
# 维度调整
|
||
outputs = dec_out.unsqueeze(dim=-1) # [B,N,pred_len,1]
|
||
outputs = outputs.permute(0, 2, 1, 3) # [B,pred_len,N,1]
|
||
|
||
return outputs |