251 lines
10 KiB
Python
251 lines
10 KiB
Python
import math
|
||
import os
|
||
import time
|
||
import copy
|
||
import torch
|
||
from utils.logger import get_logger
|
||
from utils.loss_function import all_metrics
|
||
from tqdm import tqdm
|
||
|
||
class InformerTrainer:
|
||
"""Informer模型训练器,负责整个训练流程的管理,支持多输入模型"""
|
||
|
||
def __init__(self, model, loss, optimizer,
|
||
train_loader, val_loader, test_loader, scaler,
|
||
args, lr_scheduler=None,):
|
||
# 设备和基本参数
|
||
self.config = args
|
||
self.device = args["basic"]["device"]
|
||
train_args = args["train"]
|
||
# 模型和训练相关组件
|
||
self.model = model
|
||
self.loss = loss
|
||
self.optimizer = optimizer
|
||
self.lr_scheduler = lr_scheduler
|
||
# 数据加载器
|
||
self.train_loader = train_loader
|
||
self.val_loader = val_loader
|
||
self.test_loader = test_loader
|
||
# 数据处理工具
|
||
self.scaler = scaler
|
||
self.args = train_args
|
||
# 初始化路径、日志和统计
|
||
self._initialize_paths(train_args)
|
||
self._initialize_logger(train_args)
|
||
|
||
def _initialize_paths(self, args):
|
||
"""初始化模型保存路径"""
|
||
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
|
||
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
|
||
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
|
||
|
||
def _initialize_logger(self, args):
|
||
"""初始化日志记录器"""
|
||
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
|
||
os.makedirs(args["log_dir"], exist_ok=True)
|
||
self.logger = get_logger(args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"])
|
||
self.logger.info(f"Experiment log path in: {args['log_dir']}")
|
||
|
||
def _run_epoch(self, epoch, dataloader, mode):
|
||
"""运行一个训练/验证/测试epoch,支持多输入模型"""
|
||
# 设置模型模式和是否进行优化
|
||
if mode == "train": self.model.train(); optimizer_step = True
|
||
else: self.model.eval(); optimizer_step = False
|
||
|
||
# 初始化变量
|
||
total_loss = 0
|
||
epoch_time = time.time()
|
||
y_pred, y_true = [], []
|
||
|
||
# 训练/验证循环
|
||
with torch.set_grad_enabled(optimizer_step):
|
||
progress_bar = tqdm(
|
||
enumerate(dataloader),
|
||
total=len(dataloader),
|
||
desc=f"{mode.capitalize()} Epoch {epoch}"
|
||
)
|
||
for _, (x, y, x_mark, y_mark) in progress_bar:
|
||
# 转移数据
|
||
x = x.to(self.device)
|
||
y = y[:, -self.args['pred_len']:, :self.args["output_dim"]].to(self.device)
|
||
x_mark = x_mark.to(self.device)
|
||
y_mark = y_mark.to(self.device)
|
||
# [256, 24, 6]
|
||
dec_inp = torch.zeros_like(y[:, -self.args['pred_len']:, :]).float()
|
||
# [256, 48(pred+label), 6]
|
||
dec_inp = torch.cat([y[:, :self.args['label_len'], :], dec_inp], dim=1).float().to(self.device)
|
||
|
||
# 计算loss和反归一化loss
|
||
output = self.model(x, x_mark, dec_inp, y_mark)
|
||
if os.environ.get("TRY") == "True":
|
||
print(f"[{'✅' if output.shape == y.shape else '❌'}]: output: {output.shape}, label: {y.shape}")
|
||
assert False
|
||
loss = self.loss(output, y)
|
||
d_output = self.scaler.inverse_transform(output)
|
||
d_label = self.scaler.inverse_transform(y)
|
||
d_loss = self.loss(d_output, d_label)
|
||
# 累积损失和预测结果
|
||
total_loss += d_loss.item()
|
||
y_pred.append(d_output.detach().cpu())
|
||
y_true.append(d_label.detach().cpu())
|
||
# 反向传播和优化(仅在训练模式)
|
||
if optimizer_step and self.optimizer is not None:
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
# 梯度裁剪(如果需要)
|
||
if self.args["grad_norm"]:
|
||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
|
||
self.optimizer.step()
|
||
# 更新进度条
|
||
progress_bar.set_postfix(loss=d_loss.item())
|
||
|
||
# 合并所有批次的预测结果
|
||
y_pred = torch.cat(y_pred, dim=0)
|
||
y_true = torch.cat(y_true, dim=0)
|
||
# 计算损失并记录指标
|
||
avg_loss = total_loss / len(dataloader)
|
||
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||
self.logger.info(
|
||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
|
||
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||
)
|
||
return avg_loss
|
||
|
||
def train_epoch(self, epoch):
|
||
return self._run_epoch(epoch, self.train_loader, "train")
|
||
|
||
def val_epoch(self, epoch):
|
||
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||
|
||
def test_epoch(self, epoch):
|
||
return self._run_epoch(epoch, self.test_loader, "test")
|
||
|
||
def train(self):
|
||
# 初始化记录
|
||
best_model, best_test_model = None, None
|
||
best_loss, best_test_loss = float("inf"), float("inf")
|
||
not_improved_count = 0
|
||
# 开始训练
|
||
self.logger.info("Training process started")
|
||
# 训练循环
|
||
for epoch in range(1, self.args["epochs"] + 1):
|
||
# 训练、验证和测试一个epoch
|
||
train_epoch_loss = self.train_epoch(epoch)
|
||
val_epoch_loss = self.val_epoch(epoch)
|
||
test_epoch_loss = self.test_epoch(epoch)
|
||
# 检查梯度爆炸
|
||
if train_epoch_loss > 1e6:
|
||
self.logger.warning("Gradient explosion detected. Ending...")
|
||
break
|
||
# 更新最佳验证模型
|
||
if val_epoch_loss < best_loss:
|
||
best_loss = val_epoch_loss
|
||
not_improved_count = 0
|
||
best_model = copy.deepcopy(self.model.state_dict())
|
||
self.logger.info("Best validation model saved!")
|
||
else:
|
||
not_improved_count += 1
|
||
# 早停
|
||
if self._should_early_stop(not_improved_count):
|
||
break
|
||
# 更新最佳测试模型
|
||
if test_epoch_loss < best_test_loss:
|
||
best_test_loss = test_epoch_loss
|
||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||
# 保存最佳模型
|
||
if not self.args["debug"]:
|
||
self._save_best_models(best_model, best_test_model)
|
||
# 最终评估
|
||
self._finalize_training(best_model, best_test_model)
|
||
|
||
def _should_early_stop(self, not_improved_count):
|
||
"""检查是否满足早停条件"""
|
||
if (
|
||
self.args["early_stop"]
|
||
and not_improved_count == self.args["early_stop_patience"]
|
||
):
|
||
self.logger.info(
|
||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
|
||
)
|
||
return True
|
||
return False
|
||
|
||
def _save_best_models(self, best_model, best_test_model):
|
||
"""保存最佳模型到文件"""
|
||
torch.save(best_model, self.best_path)
|
||
torch.save(best_test_model, self.best_test_path)
|
||
self.logger.info(
|
||
f"Best models saved at {self.best_path} and {self.best_test_path}"
|
||
)
|
||
|
||
def _log_model_params(self):
|
||
"""输出模型可训练参数数量"""
|
||
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
|
||
self.logger.info(f"Trainable params: {total_params}")
|
||
|
||
|
||
def _finalize_training(self, best_model, best_test_model):
|
||
self.model.load_state_dict(best_model)
|
||
self.logger.info("Testing on best validation model")
|
||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||
self.model.load_state_dict(best_test_model)
|
||
self.logger.info("Testing on best test model")
|
||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||
|
||
@staticmethod
|
||
def test(model, args, data_loader, scaler, logger, path=None):
|
||
"""对模型进行评估并输出性能指标,支持多输入模型"""
|
||
device = args["device"]
|
||
|
||
if path:
|
||
checkpoint = torch.load(path)
|
||
model.load_state_dict(checkpoint["state_dict"])
|
||
model.to(device)
|
||
|
||
# 设置为评估模式
|
||
model.eval()
|
||
|
||
# 收集预测和真实标签
|
||
y_pred, y_true = [], []
|
||
pred_len = args['pred_len']
|
||
label_len = args['label_len']
|
||
output_dim = args['output_dim']
|
||
|
||
# 不计算梯度的情况下进行预测
|
||
with torch.no_grad():
|
||
for _, (x, y, x_mark, y_mark) in enumerate(data_loader):
|
||
# 转移数据
|
||
x = x.to(device)
|
||
y = y[:, -pred_len:, :output_dim].to(device)
|
||
x_mark = x_mark.to(device)
|
||
y_mark = y_mark.to(device)
|
||
# 生成dec_inp
|
||
dec_inp = torch.zeros_like(y[:, -pred_len:, :]).float()
|
||
dec_inp = torch.cat([y[:, :label_len, :], dec_inp], dim=1).float().to(device)
|
||
output = model(x, x_mark, dec_inp, y_mark)
|
||
y_pred.append(output.detach().cpu())
|
||
y_true.append(y.detach().cpu())
|
||
|
||
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
|
||
mae_thresh = args["mae_thresh"]
|
||
mape_thresh = args["mape_thresh"]
|
||
|
||
# 计算并记录每个时间步的指标
|
||
for t in range(d_y_true.shape[1]):
|
||
mae, rmse, mape = all_metrics(
|
||
d_y_pred[:, t, ...],
|
||
d_y_true[:, t, ...],
|
||
mae_thresh,
|
||
mape_thresh,
|
||
)
|
||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||
|
||
# 计算并记录平均指标
|
||
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
|
||
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||
|
||
@staticmethod
|
||
def _compute_sampling_threshold(global_step, k):
|
||
return k / (k + math.exp(global_step / k))
|