148 lines
4.8 KiB
Python
Executable File
148 lines
4.8 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class DynamicGraphConstructor(nn.Module):
|
|
def __init__(self, node_num, embed_dim):
|
|
super().__init__()
|
|
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
|
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
|
|
|
def forward(self):
|
|
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
|
adj = F.relu(adj)
|
|
adj = F.softmax(adj, dim=-1)
|
|
return adj
|
|
|
|
|
|
class GraphConvBlock(nn.Module):
|
|
def __init__(self, input_dim, output_dim):
|
|
super().__init__()
|
|
self.theta = nn.Linear(input_dim, output_dim)
|
|
self.residual = (input_dim == output_dim)
|
|
if not self.residual:
|
|
self.res_proj = nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(self, x, adj):
|
|
res = x
|
|
x = torch.matmul(adj, x)
|
|
x = self.theta(x)
|
|
x = x + (res if self.residual else self.res_proj(res))
|
|
return F.relu(x)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, embed_dim, num_heads=4, dim_feedforward=None):
|
|
super().__init__()
|
|
# feedforward dimension defaults to 2*embed_dim if not provided
|
|
ff_dim = dim_feedforward if dim_feedforward is not None else 2 * embed_dim
|
|
self.layer = nn.TransformerEncoderLayer(
|
|
d_model=embed_dim,
|
|
nhead=num_heads,
|
|
dim_feedforward=ff_dim,
|
|
batch_first=True
|
|
)
|
|
|
|
def forward(self, x):
|
|
# x: (batch, seq_len, embed_dim)
|
|
return self.layer(x)
|
|
|
|
|
|
class SandwichBlock(nn.Module):
|
|
def __init__(self, num_nodes, embed_dim, hidden_dim, num_heads=4):
|
|
super().__init__()
|
|
self.transformer1 = TransformerBlock(hidden_dim, num_heads=num_heads, dim_feedforward=hidden_dim * 2)
|
|
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
|
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
|
self.transformer2 = TransformerBlock(hidden_dim, num_heads=num_heads, dim_feedforward=hidden_dim * 2)
|
|
|
|
def forward(self, h):
|
|
# h: (batch, num_nodes, hidden_dim)
|
|
h1 = self.transformer1(h)
|
|
adj = self.graph_constructor()
|
|
h2 = self.gc(h1, adj)
|
|
h3 = self.transformer2(h2)
|
|
return h3
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
|
super().__init__()
|
|
dims = [in_dim] + hidden_dims + [out_dim]
|
|
layers = []
|
|
for i in range(len(dims) - 2):
|
|
layers += [nn.Linear(dims[i], dims[i + 1]), activation()]
|
|
layers += [nn.Linear(dims[-2], dims[-1])]
|
|
self.net = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class EXP(nn.Module):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
self.horizon = args['horizon']
|
|
self.output_dim = args['output_dim']
|
|
self.seq_len = args.get('in_len', 12)
|
|
self.hidden_dim = args.get('hidden_dim', 64)
|
|
self.num_nodes = args['num_nodes']
|
|
self.embed_dim = args.get('embed_dim', 16)
|
|
|
|
# time embeddings
|
|
self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5))
|
|
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
|
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
|
|
|
# input projection
|
|
self.input_proj = MLP(
|
|
in_dim=self.seq_len,
|
|
hidden_dims=[self.hidden_dim],
|
|
out_dim=self.hidden_dim
|
|
)
|
|
|
|
# two Sandwich blocks with transformer
|
|
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
|
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
|
|
|
# output projection
|
|
self.out_proj = MLP(
|
|
in_dim=self.hidden_dim,
|
|
hidden_dims=[2 * self.hidden_dim],
|
|
out_dim=self.horizon * self.output_dim
|
|
)
|
|
|
|
def forward(self, x):
|
|
# x: (B, T, N, D_total)
|
|
x_flow = x[..., 0]
|
|
x_time = x[..., 1]
|
|
x_day = x[..., 2]
|
|
|
|
B, T, N = x_flow.shape
|
|
assert T == self.seq_len
|
|
|
|
# project flow history
|
|
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
|
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
|
|
|
# time embeddings
|
|
t_idx = (x_time[:, -1, :] * (self.time_slots - 1)).long()
|
|
d_idx = x_day[:, -1, :].long()
|
|
time_emb = self.time_embedding(t_idx)
|
|
day_emb = self.day_embedding(d_idx)
|
|
|
|
# inject embeddings
|
|
h0 = h0 + time_emb + day_emb
|
|
|
|
# Sandwich blocks with residuals
|
|
h1 = self.sandwich1(h0)
|
|
h1 = h1 + h0
|
|
h2 = self.sandwich2(h1)
|
|
|
|
# output
|
|
out = self.out_proj(h2)
|
|
out = out.view(B, N, self.horizon, self.output_dim)
|
|
out = out.permute(0, 2, 1, 3)
|
|
return out
|