174 lines
5.7 KiB
Python
Executable File
174 lines
5.7 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
"""
|
|
(无效)节点混合专家
|
|
"""
|
|
|
|
class MANBA_Block(nn.Module):
|
|
def __init__(self, input_dim, hidden_dim):
|
|
super().__init__()
|
|
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
|
self.ffn = nn.Sequential(
|
|
nn.Linear(input_dim, hidden_dim),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_dim, input_dim)
|
|
)
|
|
self.norm1 = nn.LayerNorm(input_dim)
|
|
self.norm2 = nn.LayerNorm(input_dim)
|
|
|
|
def forward(self, x):
|
|
# x: (B, N, input_dim)
|
|
res = x
|
|
x_attn, _ = self.attn(x, x, x)
|
|
x = self.norm1(res + x_attn)
|
|
res2 = x
|
|
x_ffn = self.ffn(x)
|
|
x = self.norm2(res2 + x_ffn)
|
|
return x
|
|
|
|
|
|
class ExpertBlock(nn.Module):
|
|
"""
|
|
Mixture-of-Experts block: routes each node's representation to a selected expert or a shared expert.
|
|
"""
|
|
def __init__(self, hidden_dim, num_experts):
|
|
super().__init__()
|
|
self.num_experts = num_experts
|
|
# gating network projects to num_experts + 1 (extra shared expert)
|
|
self.gate = nn.Linear(hidden_dim, num_experts + 1)
|
|
# per-expert FFNs
|
|
self.experts = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim * 2),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_dim * 2, hidden_dim)
|
|
) for _ in range(num_experts)
|
|
])
|
|
# shared expert
|
|
self.shared_expert = nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim * 2),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_dim * 2, hidden_dim)
|
|
)
|
|
|
|
def forward(self, x):
|
|
# x: (B, N, hidden_dim)
|
|
B, N, D = x.shape
|
|
# flatten to (B*N, D)
|
|
flat = x.view(B * N, D)
|
|
# compute gating scores and select expert per node
|
|
scores = F.softmax(self.gate(flat), dim=-1) # (B*N, num_experts+1)
|
|
idx = scores.argmax(dim=-1) # (B*N,)
|
|
|
|
out_flat = torch.zeros_like(flat)
|
|
# apply each expert
|
|
for e in range(self.num_experts):
|
|
mask = (idx == e)
|
|
if mask.any():
|
|
out_flat[mask] = self.experts[e](flat[mask])
|
|
# apply shared expert for last index
|
|
shared_mask = (idx == self.num_experts)
|
|
if shared_mask.any():
|
|
out_flat[shared_mask] = self.shared_expert(flat[shared_mask])
|
|
|
|
# reshape back to (B, N, D)
|
|
return out_flat.view(B, N, D)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
|
super().__init__()
|
|
dims = [in_dim] + hidden_dims + [out_dim]
|
|
layers = []
|
|
for i in range(len(dims) - 2):
|
|
layers += [nn.Linear(dims[i], dims[i+1]), activation()]
|
|
layers += [nn.Linear(dims[-2], dims[-1])]
|
|
self.net = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class SandwichBlock(nn.Module):
|
|
def __init__(self, num_nodes, embed_dim, hidden_dim, num_experts):
|
|
super().__init__()
|
|
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
|
self.expert_block = ExpertBlock(hidden_dim, num_experts)
|
|
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
|
|
|
def forward(self, h):
|
|
h1 = self.manba1(h)
|
|
h2 = self.expert_block(h1)
|
|
h3 = self.manba2(h2)
|
|
return h3
|
|
|
|
|
|
class EXP(nn.Module):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
self.horizon = args['horizon']
|
|
self.output_dim = args['output_dim']
|
|
self.seq_len = args.get('in_len', 12)
|
|
self.hidden_dim = args.get('hidden_dim', 64)
|
|
self.num_nodes = args['num_nodes']
|
|
self.embed_dim = args.get('embed_dim', 16)
|
|
self.num_experts = args.get('num_experts', 8) # number of private experts
|
|
|
|
# discrete time embeddings
|
|
self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5))
|
|
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
|
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
|
|
|
# input projection
|
|
self.input_proj = MLP(
|
|
in_dim = self.seq_len,
|
|
hidden_dims = [self.hidden_dim],
|
|
out_dim = self.hidden_dim
|
|
)
|
|
|
|
# two Sandwich blocks with MoE
|
|
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim, self.num_experts)
|
|
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim, self.num_experts)
|
|
|
|
# output projection
|
|
self.out_proj = MLP(
|
|
in_dim = self.hidden_dim,
|
|
hidden_dims = [2 * self.hidden_dim],
|
|
out_dim = self.horizon * self.output_dim
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
x: (B, T, N, D_total)
|
|
x[...,0]= flow, x[...,1]=time_in_day, x[...,2]=day_in_week
|
|
"""
|
|
x_flow = x[..., 0]
|
|
x_time = x[..., 1]
|
|
x_day = x[..., 2]
|
|
|
|
B, T, N = x_flow.shape
|
|
assert T == self.seq_len
|
|
|
|
# project flow history
|
|
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
|
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
|
|
|
# time & day embeddings at last step
|
|
t_idx = (x_time[:, -1, :,] * (self.time_slots - 1)).long()
|
|
d_idx = x_day[:, -1, :,].long()
|
|
time_emb = self.time_embedding(t_idx)
|
|
day_emb = self.day_embedding(d_idx)
|
|
h0 = h0 + time_emb + day_emb
|
|
|
|
# two MoE Sandwich blocks + residuals
|
|
h1 = self.sandwich1(h0) + h0
|
|
h2 = self.sandwich2(h1) + h1
|
|
|
|
# output
|
|
out = self.out_proj(h2)
|
|
out = out.view(B, N, self.horizon, self.output_dim)
|
|
out = out.permute(0, 2, 1, 3)
|
|
return out
|