252 lines
9.3 KiB
Python
252 lines
9.3 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
|
||
from einops import rearrange
|
||
from model.AEPSA.normalizer import GumbelSoftmax
|
||
from model.AEPSA.reprogramming import PatchEmbedding, ReprogrammingLayer
|
||
import torch.nn.functional as F
|
||
|
||
class DynamicGraphEnhancer(nn.Module):
|
||
"""
|
||
动态图增强器,基于节点嵌入自动生成图结构
|
||
参考DDGCRN的设计,使用节点嵌入和特征信息动态计算邻接矩阵
|
||
"""
|
||
def __init__(self, num_nodes, in_dim, embed_dim=10):
|
||
super().__init__()
|
||
self.num_nodes = num_nodes
|
||
self.embed_dim = embed_dim
|
||
|
||
# 节点嵌入参数
|
||
self.node_embeddings = nn.Parameter(
|
||
torch.randn(num_nodes, embed_dim), requires_grad=True
|
||
)
|
||
|
||
# 特征转换层,用于生成动态调整的嵌入
|
||
self.feature_transform = nn.Sequential(
|
||
nn.Linear(in_dim, 16),
|
||
nn.Sigmoid(),
|
||
nn.Linear(16, 2),
|
||
nn.Sigmoid(),
|
||
nn.Linear(2, embed_dim)
|
||
)
|
||
|
||
# 注册单位矩阵作为固定的支持矩阵
|
||
self.register_buffer("eye", torch.eye(num_nodes))
|
||
|
||
def get_laplacian(self, graph, I, normalize=True):
|
||
"""
|
||
计算归一化拉普拉斯矩阵
|
||
"""
|
||
# 计算度矩阵的逆平方根
|
||
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5))
|
||
D_inv[torch.isinf(D_inv)] = 0.0 # 处理零除问题
|
||
|
||
if normalize:
|
||
return torch.matmul(torch.matmul(D_inv, graph), D_inv)
|
||
else:
|
||
return torch.matmul(torch.matmul(D_inv, graph + I), D_inv)
|
||
|
||
def forward(self, X):
|
||
"""
|
||
X: 输入特征 [B, N, D]
|
||
返回: 动态生成的归一化拉普拉斯矩阵 [B, N, N]
|
||
"""
|
||
batch_size = X.size(0)
|
||
laplacians = []
|
||
|
||
# 获取单位矩阵
|
||
I = self.eye.to(X.device)
|
||
|
||
for b in range(batch_size):
|
||
# 使用特征转换层生成动态嵌入调整因子
|
||
filt = self.feature_transform(X[b]) # [N, embed_dim]
|
||
|
||
# 计算节点嵌入向量
|
||
nodevec = torch.tanh(self.node_embeddings * filt)
|
||
|
||
# 通过节点嵌入的点积计算邻接矩阵
|
||
adj = F.relu(torch.matmul(nodevec, nodevec.transpose(0, 1)))
|
||
|
||
# 计算归一化拉普拉斯矩阵
|
||
laplacian = self.get_laplacian(adj, I)
|
||
laplacians.append(laplacian)
|
||
|
||
return torch.stack(laplacians, dim=0)
|
||
|
||
class GraphEnhancedEncoder(nn.Module):
|
||
"""
|
||
基于Chebyshev多项式和动态拉普拉斯矩阵的图增强编码器
|
||
用于将动态图结构信息整合到特征编码中
|
||
"""
|
||
def __init__(self, K=3, in_dim=64, hidden_dim=32, num_nodes=325, embed_dim=10, device='cpu'):
|
||
super().__init__()
|
||
self.K = K # Chebyshev多项式阶数
|
||
self.in_dim = in_dim
|
||
self.hidden_dim = hidden_dim
|
||
self.device = device
|
||
|
||
# 动态图增强器
|
||
self.graph_enhancer = DynamicGraphEnhancer(num_nodes, in_dim, embed_dim)
|
||
|
||
# 谱系数 α_k (可学习参数)
|
||
self.alpha = nn.Parameter(torch.randn(K + 1, 1))
|
||
|
||
# 传播权重 W_k (可学习参数)
|
||
self.W = nn.ParameterList([
|
||
nn.Parameter(torch.randn(in_dim, hidden_dim)) for _ in range(K + 1)
|
||
])
|
||
|
||
self.to(device)
|
||
|
||
def chebyshev_polynomials(self, L_tilde, X):
|
||
"""递归计算 [T_0(L_tilde)X, ..., T_K(L_tilde)X]"""
|
||
T_k_list = [X]
|
||
if self.K >= 1:
|
||
T_k_list.append(torch.matmul(L_tilde, X))
|
||
for k in range(2, self.K + 1):
|
||
T_k_list.append(2 * torch.matmul(L_tilde, T_k_list[-1]) - T_k_list[-2])
|
||
return T_k_list
|
||
|
||
def forward(self, X):
|
||
"""
|
||
X: 输入特征 [B, N, D]
|
||
返回: 增强后的特征 [B, N, hidden_dim*(K+1)]
|
||
"""
|
||
batch_size, num_nodes, _ = X.shape
|
||
enhanced_features = []
|
||
|
||
# 动态生成拉普拉斯矩阵
|
||
laplacians = self.graph_enhancer(X)
|
||
|
||
for b in range(batch_size):
|
||
L = laplacians[b]
|
||
|
||
# 特征值缩放
|
||
try:
|
||
lambda_max = torch.linalg.eigvalsh(L).max().real
|
||
# 避免除零问题
|
||
if lambda_max < 1e-6:
|
||
lambda_max = 1.0
|
||
L_tilde = (2.0 / lambda_max) * L - torch.eye(L.size(0), device=L.device)
|
||
except:
|
||
# 如果计算特征值失败,使用单位矩阵
|
||
L_tilde = torch.eye(num_nodes, device=X.device)
|
||
|
||
# 计算Chebyshev多项式展开
|
||
T_k_list = self.chebyshev_polynomials(L_tilde, X[b])
|
||
H_list = []
|
||
|
||
# 应用传播权重
|
||
for k in range(self.K + 1):
|
||
H_k = torch.matmul(T_k_list[k], self.W[k])
|
||
H_list.append(H_k)
|
||
|
||
# 拼接所有尺度的特征
|
||
X_enhanced = torch.cat(H_list, dim=-1) # [N, hidden_dim*(K+1)]
|
||
enhanced_features.append(X_enhanced)
|
||
|
||
return torch.stack(enhanced_features, dim=0)
|
||
|
||
class AEPSA(nn.Module):
|
||
|
||
def __init__(self, configs):
|
||
super(AEPSA, self).__init__()
|
||
self.device = configs['device']
|
||
self.pred_len = configs['pred_len']
|
||
self.seq_len = configs['seq_len']
|
||
self.patch_len = configs['patch_len']
|
||
self.input_dim = configs['input_dim']
|
||
self.stride = configs['stride']
|
||
self.dropout = configs['dropout']
|
||
self.gpt_layers = configs['gpt_layers']
|
||
self.d_ff = configs['d_ff']
|
||
self.gpt_path = configs['gpt_path']
|
||
self.num_nodes = configs.get('num_nodes', 325) # 添加节点数量配置
|
||
self.output_dim = configs.get('output_dim', 1)
|
||
|
||
self.word_choice = GumbelSoftmax(configs['word_num'])
|
||
|
||
self.d_model = configs['d_model']
|
||
self.n_heads = configs['n_heads']
|
||
self.d_keys = None
|
||
self.d_llm = 768
|
||
|
||
self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2)
|
||
self.head_nf = self.d_ff * self.patch_nums
|
||
|
||
# 词嵌入
|
||
self.patch_embedding = PatchEmbedding(self.d_model, self.patch_len, self.stride, self.dropout, self.patch_nums, self.input_dim, self.output_dim)
|
||
|
||
# GPT2初始化
|
||
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True)
|
||
self.gpts.h = self.gpts.h[:self.gpt_layers]
|
||
self.gpts.apply(self.reset_parameters)
|
||
|
||
self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device)
|
||
self.vocab_size = self.word_embeddings.shape[0]
|
||
self.mapping_layer = nn.Linear(self.vocab_size, 1)
|
||
self.reprogramming_layer = ReprogrammingLayer(self.d_model, self.n_heads, self.d_keys, self.d_llm)
|
||
|
||
# 添加动态图增强编码器
|
||
self.graph_encoder = GraphEnhancedEncoder(
|
||
K=configs.get('chebyshev_order', 3),
|
||
in_dim=self.d_model,
|
||
hidden_dim=configs.get('graph_hidden_dim', 32),
|
||
num_nodes=self.num_nodes,
|
||
embed_dim=configs.get('graph_embed_dim', 10),
|
||
device=self.device
|
||
)
|
||
|
||
# 特征融合层
|
||
self.feature_fusion = nn.Linear(
|
||
self.d_model + configs.get('graph_hidden_dim', 32) * (configs.get('chebyshev_order', 3) + 1),
|
||
self.d_model
|
||
)
|
||
|
||
self.out_mlp = nn.Sequential(
|
||
nn.Linear(self.d_llm, 128),
|
||
nn.ReLU(),
|
||
nn.Linear(128, self.pred_len)
|
||
)
|
||
|
||
for i, (name, param) in enumerate(self.gpts.named_parameters()):
|
||
if 'wpe' in name:
|
||
param.requires_grad = True
|
||
else:
|
||
param.requires_grad = False
|
||
|
||
def reset_parameters(self, module):
|
||
if hasattr(module, 'weight') and module.weight is not None:
|
||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
||
if hasattr(module, 'bias') and module.bias is not None:
|
||
torch.nn.init.zeros_(module.bias)
|
||
|
||
def forward(self, x):
|
||
"""
|
||
x: 输入数据 [B, T, N, C]
|
||
自动生成图结构,无需外部提供邻接矩阵
|
||
"""
|
||
x = x[..., :self.input_dim]
|
||
x_enc = rearrange(x, 'b t n c -> b n c t')
|
||
# 原版Patch
|
||
enc_out, n_vars = self.patch_embedding(x_enc) # (B, N, C)
|
||
# 应用图增强编码器(自动生成图结构)
|
||
graph_enhanced = self.graph_encoder(enc_out)
|
||
# 特征融合 - 现在两个张量都是三维的 [B, N, d_model]
|
||
enc_out = torch.cat([enc_out, graph_enhanced], dim=-1)
|
||
enc_out = self.feature_fusion(enc_out)
|
||
|
||
self.mapping_layer(self.word_embeddings.permute(1, 0)).permute(1, 0)
|
||
masks = self.word_choice(self.mapping_layer.weight.data.permute(1,0))
|
||
source_embeddings = self.word_embeddings[masks==1]
|
||
|
||
enc_out = self.reprogramming_layer(enc_out, source_embeddings, source_embeddings)
|
||
enc_out = self.gpts(inputs_embeds=enc_out).last_hidden_state
|
||
|
||
dec_out = self.out_mlp(enc_out)
|
||
outputs = dec_out.unsqueeze(dim=-1)
|
||
outputs = outputs.repeat(1, 1, 1, n_vars)
|
||
outputs = outputs.permute(0,2,1,3)
|
||
|
||
return outputs
|