217 lines
6.8 KiB
Python
Executable File
217 lines
6.8 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
"""
|
||
添加时间嵌入 + 引入图注意力网络(GAT)
|
||
"""
|
||
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
self.nodevec2 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
|
||
def forward(self):
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
|
||
# 原来的 GCN 块保留备用
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = input_dim == output_dim
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
res = x
|
||
x = torch.matmul(adj, x)
|
||
x = self.theta(x)
|
||
x = x + (res if self.residual else self.res_proj(res))
|
||
return F.relu(x)
|
||
|
||
|
||
# ★★ GAT 部分:从 LeronQ/GCN_predict-Pytorch 改写而来 ★★
|
||
class GraphAttentionLayer(nn.Module):
|
||
def __init__(self, in_c, out_c):
|
||
super().__init__()
|
||
self.W = nn.Linear(in_c, out_c, bias=False)
|
||
self.b = nn.Parameter(torch.Tensor(out_c))
|
||
nn.init.xavier_uniform_(self.W.weight)
|
||
nn.init.zeros_(self.b)
|
||
|
||
def forward(self, h, adj):
|
||
# h: [B, N, C_in], adj: [N, N]
|
||
Wh = self.W(h) # [B, N, C_out]
|
||
# 计算注意力得分
|
||
score = torch.bmm(Wh, Wh.transpose(1, 2)) * adj.unsqueeze(0) # [B, N, N]
|
||
score = score.masked_fill(score == 0, -1e16)
|
||
alpha = F.softmax(score, dim=-1) # [B, N, N]
|
||
# 加权求和并加偏置
|
||
out = torch.bmm(alpha, Wh) + self.b # [B, N, C_out]
|
||
return F.relu(out)
|
||
|
||
|
||
class GraphAttentionBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim, n_heads=4):
|
||
super().__init__()
|
||
# 多头注意力
|
||
self.heads = nn.ModuleList(
|
||
[GraphAttentionLayer(input_dim, output_dim) for _ in range(n_heads)]
|
||
)
|
||
# 合并后再做一次线性映射
|
||
self.out_att = GraphAttentionLayer(output_dim * n_heads, output_dim)
|
||
self.act = nn.ReLU()
|
||
|
||
def forward(self, x, adj):
|
||
# x: [B, N, C], adj: [N, N]
|
||
# 并行多头,然后拼接
|
||
h_cat = torch.cat(
|
||
[head(x, adj) for head in self.heads], dim=-1
|
||
) # [B, N, output_dim * n_heads]
|
||
h_out = self.out_att(h_cat, adj) # [B, N, output_dim]
|
||
return self.act(h_out)
|
||
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(
|
||
embed_dim=input_dim, num_heads=4, batch_first=True
|
||
)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim),
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
return x
|
||
|
||
|
||
class SandwichBlock(nn.Module):
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
# ★★ 替换为 GATBlock ★★
|
||
self.gc = GraphAttentionBlock(hidden_dim, hidden_dim, n_heads=4)
|
||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
|
||
def forward(self, h):
|
||
h1 = self.manba1(h)
|
||
adj = self.graph_constructor()
|
||
h2 = self.gc(h1, adj)
|
||
h3 = self.manba2(h2)
|
||
return h3
|
||
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
||
super().__init__()
|
||
dims = [in_dim] + hidden_dims + [out_dim]
|
||
layers = []
|
||
for i in range(len(dims) - 2):
|
||
layers += [nn.Linear(dims[i], dims[i + 1]), activation()]
|
||
layers += [nn.Linear(dims[-2], dims[-1])]
|
||
self.net = nn.Sequential(*layers)
|
||
|
||
def forward(self, x):
|
||
return self.net(x)
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args["horizon"]
|
||
self.output_dim = args["output_dim"]
|
||
self.seq_len = args.get("in_len", 12)
|
||
self.hidden_dim = args.get("hidden_dim", 64)
|
||
self.num_nodes = args["num_nodes"]
|
||
self.embed_dim = args.get("embed_dim", 16)
|
||
|
||
# ==== 新增:离散时间嵌入 ====
|
||
self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5))
|
||
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
||
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
||
|
||
# 输入投影(仅 flow)
|
||
self.input_proj = MLP(
|
||
in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim
|
||
)
|
||
|
||
# 两个 SandwichBlock(已替换为 GAT)
|
||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
|
||
# 输出投影
|
||
self.out_proj = MLP(
|
||
in_dim=self.hidden_dim,
|
||
hidden_dims=[2 * self.hidden_dim],
|
||
out_dim=self.horizon * self.output_dim,
|
||
)
|
||
|
||
def forward(self, x):
|
||
"""
|
||
x: (B, T, N, D_total)
|
||
D_total >= 3, x[...,0]=flow, x[...,1]=time_in_day, x[...,2]=day_in_week
|
||
"""
|
||
x_flow = x[..., 0] # (B, T, N)
|
||
x_time = x[..., 1] # (B, T, N)
|
||
x_day = x[..., 2] # (B, T, N)
|
||
|
||
B, T, N = x_flow.shape
|
||
assert T == self.seq_len
|
||
|
||
# 1) 投影流量历史
|
||
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||
|
||
# 2) 取最后一步的时间索引并嵌入
|
||
t_idx = (
|
||
x_time[
|
||
:,
|
||
-1,
|
||
:,
|
||
]
|
||
* (self.time_slots - 1)
|
||
).long()
|
||
d_idx = x_day[
|
||
:,
|
||
-1,
|
||
:,
|
||
].long()
|
||
time_emb = self.time_embedding(t_idx)
|
||
day_emb = self.day_embedding(d_idx)
|
||
|
||
# 3) 注入时间信息
|
||
h0 = h0 + time_emb + day_emb
|
||
|
||
# 4) Sandwich + 残差
|
||
h1 = self.sandwich1(h0)
|
||
h1 = h1 + h0
|
||
h2 = self.sandwich2(h1)
|
||
|
||
# 5) 输出
|
||
out = self.out_proj(h2)
|
||
out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
|
||
return out
|