TrafficWheel/model/STID/STID.py

144 lines
4.9 KiB
Python
Executable File

import torch
from torch import nn
from model.STID.MLP import MultiLayerPerceptron
class STID(nn.Module):
"""
Paper: Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting
Link: https://arxiv.org/abs/2208.05233
Official Code: https://github.com/zezhishao/STID
"""
def __init__(self, model_args):
super().__init__()
# attributes
self.num_nodes = model_args["num_nodes"]
self.node_dim = model_args["node_dim"]
self.input_len = model_args["input_len"]
self.input_dim = model_args["input_dim"]
self.embed_dim = model_args["embed_dim"]
self.output_len = model_args["output_len"]
self.num_layer = model_args["num_layer"]
self.temp_dim_tid = model_args["temp_dim_tid"]
self.temp_dim_diw = model_args["temp_dim_diw"]
self.time_of_day_size = model_args["time_of_day_size"]
self.day_of_week_size = model_args["day_of_week_size"]
self.if_time_in_day = model_args["if_T_i_D"]
self.if_day_in_week = model_args["if_D_i_W"]
self.if_spatial = model_args["if_node"]
# spatial embeddings
if self.if_spatial:
self.node_emb = nn.Parameter(torch.empty(self.num_nodes, self.node_dim))
nn.init.xavier_uniform_(self.node_emb)
# temporal embeddings
if self.if_time_in_day:
self.time_in_day_emb = nn.Parameter(
torch.empty(self.time_of_day_size, self.temp_dim_tid)
)
nn.init.xavier_uniform_(self.time_in_day_emb)
if self.if_day_in_week:
self.day_in_week_emb = nn.Parameter(
torch.empty(self.day_of_week_size, self.temp_dim_diw)
)
nn.init.xavier_uniform_(self.day_in_week_emb)
# embedding layer
self.time_series_emb_layer = nn.Conv2d(
in_channels=self.input_dim * self.input_len,
out_channels=self.embed_dim,
kernel_size=(1, 1),
bias=True,
)
# encoding
self.hidden_dim = (
self.embed_dim
+ self.node_dim * int(self.if_spatial)
+ self.temp_dim_tid * int(self.if_day_in_week)
+ self.temp_dim_diw * int(self.if_time_in_day)
)
self.encoder = nn.Sequential(
*[
MultiLayerPerceptron(self.hidden_dim, self.hidden_dim)
for _ in range(self.num_layer)
]
)
# regression
self.regression_layer = nn.Conv2d(
in_channels=self.hidden_dim,
out_channels=self.output_len,
kernel_size=(1, 1),
bias=True,
)
def forward(self, history_data: torch.Tensor) -> torch.Tensor:
"""Feed forward of STID.
Args:
history_data (torch.Tensor): history data with shape [B, L, N, C]
Returns:
torch.Tensor: prediction with shape [B, L, N, C]
"""
# prepare data
input_data = history_data[..., range(self.input_dim)]
# input_data = history_data[..., 0:1]
if self.if_time_in_day:
t_i_d_data = history_data[..., 1]
# In the datasets used in STID, the time_of_day feature is normalized to [0, 1]. We multiply it by 288 to get the index.
# If you use other datasets, you may need to change this line.
time_in_day_emb = self.time_in_day_emb[
(t_i_d_data[:, -1, :] * self.time_of_day_size).type(torch.LongTensor)
]
else:
time_in_day_emb = None
if self.if_day_in_week:
d_i_w_data = history_data[..., 2]
day_in_week_emb = self.day_in_week_emb[
(d_i_w_data[:, -1, :] * self.day_of_week_size).type(torch.LongTensor)
]
else:
day_in_week_emb = None
# time series embedding
batch_size, _, num_nodes, _ = input_data.shape
input_data = input_data.transpose(1, 2).contiguous()
input_data = (
input_data.view(batch_size, num_nodes, -1).transpose(1, 2).unsqueeze(-1)
)
time_series_emb = self.time_series_emb_layer(input_data)
node_emb = []
if self.if_spatial:
# expand node embeddings
node_emb.append(
self.node_emb.unsqueeze(0)
.expand(batch_size, -1, -1)
.transpose(1, 2)
.unsqueeze(-1)
)
# temporal embeddings
tem_emb = []
if time_in_day_emb is not None:
tem_emb.append(time_in_day_emb.transpose(1, 2).unsqueeze(-1))
if day_in_week_emb is not None:
tem_emb.append(day_in_week_emb.transpose(1, 2).unsqueeze(-1))
# concate all embeddings
hidden = torch.cat([time_series_emb] + node_emb + tem_emb, dim=1)
# encoding
hidden = self.encoder(hidden)
# regression
prediction = self.regression_layer(hidden)
return prediction