TrafficWheel/utils/ADFtest.py

81 lines
2.5 KiB
Python
Executable File

import pandas as pd
import numpy as np
import os
from statsmodels.tsa.stattools import adfuller
from arch.unitroot import ADF
def calculate_ADF(root_path, data_path):
df_raw = pd.read_csv(os.path.join(root_path, data_path))
cols = list(df_raw.columns)
cols.remove("date")
df_raw = df_raw[cols]
adf_list = []
for i in cols:
df_data = df_raw[i]
adf = adfuller(df_data, maxlag=1)
print(adf)
adf_list.append(adf)
return np.array(adf_list)
def calculate_target_ADF(root_path, data_path, target="OT"):
df_raw = pd.read_csv(os.path.join(root_path, data_path))
target_cols = target.split(",")
# df_data = df_raw[target]
df_raw = df_raw[target_cols]
adf_list = []
for i in target_cols:
df_data = df_raw[i]
adf = adfuller(df_data, maxlag=1)
# print(adf)
adf_list.append(adf)
return np.array(adf_list)
def archADF(root_path, data_path):
df = pd.read_csv(os.path.join(root_path, data_path))
cols = df.columns[1:]
stats = 0
for target_col in cols:
series = df[target_col].values
adf = ADF(series)
stat = adf.stat
stats += stat
return stats / len(cols)
if __name__ == "__main__":
# * Exchange - result: -1.902402344564288 | report: -1.889
ADFmetric = archADF(
root_path="./dataset/exchange_rate/", data_path="exchange_rate.csv"
)
print("Exchange ADF metric", ADFmetric)
# * Illness - result: -5.33416661870624 | report: -5.406
ADFmetric = archADF(
root_path="./dataset/illness/", data_path="national_illness.csv"
)
print("Illness ADF metric", ADFmetric)
# * ETTm2 - result: -5.663628743471695 | report: -6.225
ADFmetric = archADF(root_path="./dataset/ETT-small/", data_path="ETTm2.csv")
print("ETTm2 ADF metric", ADFmetric)
# * Electricity - result: -8.44485821939281 | report: -8.483
ADFmetric = archADF(root_path="./dataset/electricity/", data_path="electricity.csv")
print("Electricity ADF metric", ADFmetric)
# * Traffic - result: -15.020978067839014 | report: -15.046
ADFmetric = archADF(root_path="./dataset/traffic/", data_path="traffic.csv")
print("Traffic ADF metric", ADFmetric)
# * Weather - result: -26.681433085204866 | report: -26.661
ADFmetric = archADF(root_path="./dataset/weather/", data_path="weather.csv")
print("Weather ADF metric", ADFmetric)
# print(ADFmetric)
# mean_ADFmetric = ADFmetric[:,0].mean()
# print(mean_ADFmetric)