163 lines
6.0 KiB
Python
163 lines
6.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
from math import sqrt
|
|
from model.Informer.masking import TriangularCausalMask, ProbMask
|
|
|
|
class FullAttention(nn.Module):
|
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
|
|
super(FullAttention, self).__init__()
|
|
self.scale = scale
|
|
self.mask_flag = mask_flag
|
|
self.output_attention = output_attention
|
|
self.dropout = nn.Dropout(attention_dropout)
|
|
|
|
def forward(self, queries, keys, values, attn_mask):
|
|
B, L, H, E = queries.shape
|
|
_, S, _, D = values.shape
|
|
scale = self.scale or 1./sqrt(E)
|
|
|
|
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
|
|
if self.mask_flag:
|
|
if attn_mask is None:
|
|
attn_mask = TriangularCausalMask(B, L, device=queries.device)
|
|
|
|
scores.masked_fill_(attn_mask.mask, -np.inf)
|
|
|
|
A = self.dropout(torch.softmax(scale * scores, dim=-1))
|
|
V = torch.einsum("bhls,bshd->blhd", A, values)
|
|
|
|
if self.output_attention:
|
|
return (V.contiguous(), A)
|
|
else:
|
|
return (V.contiguous(), None)
|
|
|
|
class ProbAttention(nn.Module):
|
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
|
|
super(ProbAttention, self).__init__()
|
|
self.factor = factor
|
|
self.scale = scale
|
|
self.mask_flag = mask_flag
|
|
self.output_attention = output_attention
|
|
self.dropout = nn.Dropout(attention_dropout)
|
|
|
|
def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
|
|
# Q [B, H, L, D]
|
|
B, H, L_K, E = K.shape
|
|
_, _, L_Q, _ = Q.shape
|
|
|
|
# calculate the sampled Q_K
|
|
K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
|
|
index_sample = torch.randint(L_K, (L_Q, sample_k)) # real U = U_part(factor*ln(L_k))*L_q
|
|
K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :]
|
|
Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze(-2)
|
|
|
|
# find the Top_k query with sparisty measurement
|
|
M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
|
|
M_top = M.topk(n_top, sorted=False)[1]
|
|
|
|
# use the reduced Q to calculate Q_K
|
|
Q_reduce = Q[torch.arange(B)[:, None, None],
|
|
torch.arange(H)[None, :, None],
|
|
M_top, :] # factor*ln(L_q)
|
|
Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k
|
|
|
|
return Q_K, M_top
|
|
|
|
def _get_initial_context(self, V, L_Q):
|
|
B, H, L_V, D = V.shape
|
|
if not self.mask_flag:
|
|
# V_sum = V.sum(dim=-2)
|
|
V_sum = V.mean(dim=-2)
|
|
contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
|
|
else: # use mask
|
|
assert(L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
|
|
contex = V.cumsum(dim=-2)
|
|
return contex
|
|
|
|
def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
|
|
B, H, L_V, D = V.shape
|
|
|
|
if self.mask_flag:
|
|
attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
|
|
scores.masked_fill_(attn_mask.mask, -np.inf)
|
|
|
|
attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
|
|
|
|
context_in[torch.arange(B)[:, None, None],
|
|
torch.arange(H)[None, :, None],
|
|
index, :] = torch.matmul(attn, V).type_as(context_in)
|
|
if self.output_attention:
|
|
attns = (torch.ones([B, H, L_V, L_V])/L_V).type_as(attn).to(attn.device)
|
|
attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
|
|
return (context_in, attns)
|
|
else:
|
|
return (context_in, None)
|
|
|
|
def forward(self, queries, keys, values, attn_mask):
|
|
B, L_Q, H, D = queries.shape
|
|
_, L_K, _, _ = keys.shape
|
|
|
|
queries = queries.transpose(2,1)
|
|
keys = keys.transpose(2,1)
|
|
values = values.transpose(2,1)
|
|
|
|
U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k)
|
|
u = self.factor * np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q)
|
|
|
|
U_part = U_part if U_part<L_K else L_K
|
|
u = u if u<L_Q else L_Q
|
|
|
|
scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u)
|
|
|
|
# add scale factor
|
|
scale = self.scale or 1./sqrt(D)
|
|
if scale is not None:
|
|
scores_top = scores_top * scale
|
|
# get the context
|
|
context = self._get_initial_context(values, L_Q)
|
|
# update the context with selected top_k queries
|
|
context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask)
|
|
|
|
return context.transpose(2,1).contiguous(), attn
|
|
|
|
|
|
class AttentionLayer(nn.Module):
|
|
def __init__(self, attention, d_model, n_heads,
|
|
d_keys=None, d_values=None, mix=False):
|
|
super(AttentionLayer, self).__init__()
|
|
|
|
d_keys = d_keys or (d_model//n_heads)
|
|
d_values = d_values or (d_model//n_heads)
|
|
|
|
self.inner_attention = attention
|
|
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
|
|
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
|
|
self.value_projection = nn.Linear(d_model, d_values * n_heads)
|
|
self.out_projection = nn.Linear(d_values * n_heads, d_model)
|
|
self.n_heads = n_heads
|
|
self.mix = mix
|
|
|
|
def forward(self, queries, keys, values, attn_mask):
|
|
B, L, _ = queries.shape
|
|
_, S, _ = keys.shape
|
|
H = self.n_heads
|
|
|
|
queries = self.query_projection(queries).view(B, L, H, -1)
|
|
keys = self.key_projection(keys).view(B, S, H, -1)
|
|
values = self.value_projection(values).view(B, S, H, -1)
|
|
|
|
out, attn = self.inner_attention(
|
|
queries,
|
|
keys,
|
|
values,
|
|
attn_mask
|
|
)
|
|
if self.mix:
|
|
out = out.transpose(2,1).contiguous()
|
|
out = out.view(B, L, -1)
|
|
|
|
return self.out_projection(out), attn |