TrafficWheel/model/GWN/GraphWaveNet.py

102 lines
4.7 KiB
Python
Executable File

import torch, torch.nn as nn, torch.nn.functional as F
class nconv(nn.Module):
def forward(self, x, A): return torch.einsum('ncvl,vw->ncwl', (x, A)).contiguous()
class linear(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.mlp = nn.Conv2d(c_in, c_out, 1)
def forward(self, x):
return self.mlp(x)
class gcn(nn.Module):
def __init__(self, c_in, c_out, dropout, support_len=3, order=2):
super().__init__()
self.nconv = nconv()
c_in = (order * support_len + 1) * c_in
self.mlp, self.dropout, self.order = linear(c_in, c_out), dropout, order
def forward(self, x, support):
out = [x]
for a in support:
x1 = self.nconv(x, a)
out.append(x1)
for _ in range(2, self.order + 1):
x1 = self.nconv(x1, a)
out.append(x1)
return F.dropout(self.mlp(torch.cat(out, dim=1)), self.dropout, training=self.training)
class gwnet(nn.Module):
def __init__(self, args):
super().__init__()
self.dropout, self.blocks, self.layers = args['dropout'], args['blocks'], args['layers']
self.gcn_bool, self.addaptadj = args['gcn_bool'], args['addaptadj']
self.filter_convs, self.gate_convs = nn.ModuleList(), nn.ModuleList()
self.residual_convs, self.skip_convs, self.bn, self.gconv = nn.ModuleList(), nn.ModuleList(), nn.ModuleList(), nn.ModuleList()
self.start_conv = nn.Conv2d(args['in_dim'], args['residual_channels'], 1)
self.supports = args.get('supports', None)
receptive_field = 1
self.supports_len = len(self.supports) if self.supports is not None else 0
if self.gcn_bool and self.addaptadj:
aptinit = args.get('aptinit', None)
if aptinit is None:
if self.supports is None: self.supports = []
self.nodevec1 = nn.Parameter(torch.randn(args['num_nodes'], 10, device=args['device']))
self.nodevec2 = nn.Parameter(torch.randn(10, args['num_nodes'], device=args['device']))
self.supports_len += 1
else:
if self.supports is None: self.supports = []
m, p, n = torch.svd(aptinit)
initemb1 = torch.mm(m[:, :10], torch.diag(p[:10] ** 0.5))
initemb2 = torch.mm(torch.diag(p[:10] ** 0.5), n[:, :10].t())
self.nodevec1 = nn.Parameter(initemb1)
self.nodevec2 = nn.Parameter(initemb2)
self.supports_len += 1
ks, res, dil, skip, endc, out_dim = args['kernel_size'], args['residual_channels'], args['dilation_channels'], \
args['skip_channels'], args['end_channels'], args['out_dim']
for b in range(self.blocks):
add_scope, new_dil = ks - 1, 1
for i in range(self.layers):
self.filter_convs.append(nn.Conv2d(res, dil, (1, ks), dilation=new_dil))
self.gate_convs.append(nn.Conv2d(res, dil, (1, ks), dilation=new_dil))
self.residual_convs.append(nn.Conv2d(dil, res, 1))
self.skip_convs.append(nn.Conv2d(dil, skip, 1))
self.bn.append(nn.BatchNorm2d(res))
new_dil *= 2
receptive_field += add_scope
add_scope *= 2
if self.gcn_bool: self.gconv.append(gcn(dil, res, args['dropout'], support_len=self.supports_len))
self.end_conv_1 = nn.Conv2d(skip, endc, 1)
self.end_conv_2 = nn.Conv2d(endc, out_dim, 1)
self.receptive_field = receptive_field
def forward(self, input):
input = input[..., 0:2].transpose(1, 3)
input = F.pad(input, (1, 0, 0, 0))
in_len = input.size(3)
x = F.pad(input, (self.receptive_field - in_len, 0, 0, 0)) if in_len < self.receptive_field else input
x, skip, new_supports = self.start_conv(x), 0, None
if self.gcn_bool and self.addaptadj and self.supports is not None:
adp = F.softmax(F.relu(torch.mm(self.nodevec1, self.nodevec2)), dim=1)
new_supports = self.supports + [adp]
for i in range(self.blocks * self.layers):
residual = x
f = self.filter_convs[i](residual).tanh()
g = self.gate_convs[i](residual).sigmoid()
x = f * g
s = self.skip_convs[i](x)
skip = (skip[:, :, :, -s.size(3):] if isinstance(skip, torch.Tensor) else 0) + s
if self.gcn_bool and self.supports is not None:
x = self.gconv[i](x, new_supports if self.addaptadj else self.supports)
else:
x = self.residual_convs[i](x)
x = x + residual[:, :, :, -x.size(3):]
x = self.bn[i](x)
return self.end_conv_2(F.relu(self.end_conv_1(F.relu(skip))))