TrafficWheel/config/STNorm/NYCBike-InFlow.yaml

64 lines
1.7 KiB
YAML

basic:
dataset: NYCBike-InFlow
device: cuda:0
mode: train
model: MTGNN
seed: 2023
data:
batch_size: 64
column_wise: false
days_per_week: 7
horizon: 24
input_dim: 1
lag: 24
normalizer: std
num_nodes: 128
steps_per_day: 48
test_ratio: 0.2
val_ratio: 0.2
model:
gcn_true: True # 是否使用图卷积网络 (bool)
buildA_true: True # 是否动态构建邻接矩阵 (bool)
subgraph_size: 20 # 子图大小 (int)
num_nodes: 128 # 节点数量 (int)
node_dim: 40 # 节点嵌入维度 (int)
dilation_exponential: 1 # 膨胀卷积指数 (int)
conv_channels: 32 # 卷积通道数 (int)
residual_channels: 32 # 残差通道数 (int)
skip_channels: 64 # 跳跃连接通道数 (int)
end_channels: 128 # 输出层通道数 (int)
seq_len: 24 # 输入序列长度 (int)
in_dim: 1 # 输入特征维度 (int)
out_len: 24 # 输出序列长度 (int)
out_dim: 1 # 输出预测维度 (int)
layers: 3 # 模型层数 (int)
propalpha: 0.05 # 图传播参数alpha (float)
tanhalpha: 3 # tanh激活参数alpha (float)
layer_norm_affline: True # 层归一化是否使用affine变换 (bool)
gcn_depth: 2 # 图卷积深度 (int)
dropout: 0.3 # dropout率 (float)
predefined_A: null # 预定义邻接矩阵 (optional, None)
static_feat: null # 静态特征 (optional, None)
train:
batch_size: 64
debug: false
early_stop: true
early_stop_patience: 15
epochs: 100
grad_norm: false
log_step: 1000
loss_func: mae
lr_decay: true
lr_decay_rate: 0.3
lr_decay_step: 5,20,40,70
lr_init: 0.003
mae_thresh: None
mape_thresh: 0.001
max_grad_norm: 5
output_dim: 1
plot: false
real_value: true
weight_decay: 0