64 lines
1.7 KiB
YAML
64 lines
1.7 KiB
YAML
basic:
|
|
dataset: PEMS-BAY
|
|
device: cuda:0
|
|
mode: train
|
|
model: MTGNN
|
|
seed: 2023
|
|
|
|
data:
|
|
batch_size: 64
|
|
column_wise: false
|
|
days_per_week: 7
|
|
horizon: 24
|
|
input_dim: 1
|
|
lag: 24
|
|
normalizer: std
|
|
num_nodes: 325
|
|
steps_per_day: 288
|
|
test_ratio: 0.2
|
|
val_ratio: 0.2
|
|
|
|
model:
|
|
gcn_true: True # 是否使用图卷积网络 (bool)
|
|
buildA_true: True # 是否动态构建邻接矩阵 (bool)
|
|
subgraph_size: 20 # 子图大小 (int)
|
|
num_nodes: 325 # 节点数量 (int)
|
|
node_dim: 40 # 节点嵌入维度 (int)
|
|
dilation_exponential: 1 # 膨胀卷积指数 (int)
|
|
conv_channels: 32 # 卷积通道数 (int)
|
|
residual_channels: 32 # 残差通道数 (int)
|
|
skip_channels: 64 # 跳跃连接通道数 (int)
|
|
end_channels: 128 # 输出层通道数 (int)
|
|
seq_len: 24 # 输入序列长度 (int)
|
|
in_dim: 1 # 输入特征维度 (int)
|
|
out_len: 24 # 输出序列长度 (int)
|
|
out_dim: 1 # 输出预测维度 (int)
|
|
layers: 3 # 模型层数 (int)
|
|
propalpha: 0.05 # 图传播参数alpha (float)
|
|
tanhalpha: 3 # tanh激活参数alpha (float)
|
|
layer_norm_affline: True # 层归一化是否使用affine变换 (bool)
|
|
gcn_depth: 2 # 图卷积深度 (int)
|
|
dropout: 0.3 # dropout率 (float)
|
|
predefined_A: null # 预定义邻接矩阵 (optional, None)
|
|
static_feat: null # 静态特征 (optional, None)
|
|
|
|
train:
|
|
batch_size: 64
|
|
debug: false
|
|
early_stop: true
|
|
early_stop_patience: 15
|
|
epochs: 100
|
|
grad_norm: false
|
|
log_step: 1000
|
|
loss_func: mae
|
|
lr_decay: true
|
|
lr_decay_rate: 0.3
|
|
lr_decay_step: 5,20,40,70
|
|
lr_init: 0.003
|
|
mae_thresh: None
|
|
mape_thresh: 0.001
|
|
max_grad_norm: 5
|
|
output_dim: 1
|
|
plot: false
|
|
real_value: true
|
|
weight_decay: 0 |