TrafficWheel/model/Informer/Informer_old/embed.py

37 lines
1.1 KiB
Python

# model/InformerOnlyX/embed.py
import torch
import torch.nn as nn
import math
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe.unsqueeze(0)) # [1, L, D]
def forward(self, x):
return self.pe[:, :x.size(1)]
class DataEmbedding(nn.Module):
"""
Informer-style embedding without time covariates
"""
def __init__(self, c_in, d_model, dropout):
super().__init__()
self.value_embedding = nn.Linear(c_in, d_model)
self.position_embedding = PositionalEmbedding(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.value_embedding(x) + self.position_embedding(x)
return self.dropout(x)