TrafficWheel/model/EXP/trash/EXP13.py

133 lines
4.1 KiB
Python
Executable File

import torch
import torch.nn as nn
import torch.nn.functional as F
"""
含残差的双层 空间->时间->空间 结构模型 无效
"""
class DynamicGraphConstructor(nn.Module):
def __init__(self, node_num, embed_dim):
super().__init__()
self.nodevec1 = nn.Parameter(
torch.randn(node_num, embed_dim), requires_grad=True
)
self.nodevec2 = nn.Parameter(
torch.randn(node_num, embed_dim), requires_grad=True
)
def forward(self):
# 构造动态邻接矩阵 (N, N)
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
adj = F.relu(adj)
adj = F.softmax(adj, dim=-1)
return adj
class GraphConvBlock(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.theta = nn.Linear(input_dim, output_dim)
self.residual = input_dim == output_dim
if not self.residual:
self.res_proj = nn.Linear(input_dim, output_dim)
def forward(self, x, adj):
# x: (B, N, C)
res = x
x = torch.matmul(adj, x)
x = self.theta(x)
x = x + (res if self.residual else self.res_proj(res))
return F.relu(x)
class MANBA_Block(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.attn = nn.MultiheadAttention(
embed_dim=input_dim, num_heads=4, batch_first=True
)
self.ffn = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim),
)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
def forward(self, x):
# x: (B, N, C) 当 N 视为时间序列长度
res = x
x_attn, _ = self.attn(x, x, x)
x = self.norm1(res + x_attn)
res2 = x
x_ffn = self.ffn(x)
x = self.norm2(res2 + x_ffn)
return x
class SandwichBlock(nn.Module):
"""
空间 -> 时间 -> 空间 三明治结构
输入/输出: (B, N, hidden_dim)
"""
def __init__(self, num_nodes, embed_dim, hidden_dim):
super().__init__()
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
self.gc1 = GraphConvBlock(hidden_dim, hidden_dim)
self.manba = MANBA_Block(hidden_dim, hidden_dim * 2)
self.gc2 = GraphConvBlock(hidden_dim, hidden_dim)
def forward(self, h):
# 第一步:空间卷积
adj = self.graph_constructor()
h1 = self.gc1(h, adj)
# 第二步:时间注意力
h2 = self.manba(h1)
# 第三步:空间卷积
h3 = self.gc2(h2, adj)
return h3
class EXP(nn.Module):
def __init__(self, args):
super().__init__()
self.horizon = args["horizon"]
self.output_dim = args["output_dim"]
self.seq_len = args.get("in_len", 12)
self.hidden_dim = args.get("hidden_dim", 64)
self.num_nodes = args["num_nodes"]
self.embed_dim = args.get("embed_dim", 16)
# 输入映射
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
# 两层 空间-时间-空间 三明治块
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
# 输出映射
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
def forward(self, x):
# x: (B, T, N, D)
x_main = x[..., 0] # (B, T, N)
B, T, N = x_main.shape
assert T == self.seq_len
# 投影到隐藏维 (B,N,hidden)
x_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
# 第一层三明治 + 残差
h1 = self.sandwich1(h0)
h1 = h1 + h0
# 第二层三明治
h2 = self.sandwich2(h1)
# 输出
out = self.out_proj(h2) # (B, N, H*D_out)
out = out.view(B, N, self.horizon, self.output_dim)
out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
return out