239 lines
7.2 KiB
Python
Executable File
239 lines
7.2 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
|
||
"""
|
||
在 EXP 模型中添加趋势专家、周期专家和物理专家,并通过门控网络(Gating Network)动态融合专家输出
|
||
"""
|
||
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
self.nodevec2 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
|
||
def forward(self):
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = input_dim == output_dim
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
res = x
|
||
x = torch.matmul(adj, x)
|
||
x = self.theta(x)
|
||
x = x + (res if self.residual else self.res_proj(res))
|
||
return F.relu(x)
|
||
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(
|
||
embed_dim=input_dim, num_heads=4, batch_first=True
|
||
)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim),
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
return x
|
||
|
||
|
||
class SandwichBlock(nn.Module):
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
|
||
def forward(self, h):
|
||
h1 = self.manba1(h)
|
||
adj = self.graph_constructor()
|
||
h2 = self.gc(h1, adj)
|
||
h3 = self.manba2(h2)
|
||
return h3
|
||
|
||
|
||
# --------- 新增:专家网络定义 ---------
|
||
class TrendExpert(nn.Module):
|
||
"""捕捉数据中的长期趋势"""
|
||
|
||
def __init__(self, hidden_dim):
|
||
super().__init__()
|
||
self.trend_mlp = nn.Sequential(
|
||
nn.Linear(hidden_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, hidden_dim),
|
||
)
|
||
|
||
def forward(self, h):
|
||
return self.trend_mlp(h)
|
||
|
||
|
||
class PeriodicExpert(nn.Module):
|
||
"""捕捉周期性模式"""
|
||
|
||
def __init__(self, hidden_dim):
|
||
super().__init__()
|
||
self.periodic_mlp = nn.Sequential(
|
||
nn.Linear(hidden_dim, hidden_dim),
|
||
nn.GELU(),
|
||
nn.Linear(hidden_dim, hidden_dim),
|
||
)
|
||
|
||
def forward(self, h):
|
||
# 占位:可扩展为傅里叶域处理
|
||
return self.periodic_mlp(h)
|
||
|
||
|
||
class PhysicalExpert(nn.Module):
|
||
"""基于物理规律的图卷积专家"""
|
||
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
self.graph_conv = GraphConvBlock(hidden_dim, hidden_dim)
|
||
|
||
def forward(self, h):
|
||
adj = self.graph_constructor()
|
||
return self.graph_conv(h, adj)
|
||
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
||
super().__init__()
|
||
dims = [in_dim] + hidden_dims + [out_dim]
|
||
layers = []
|
||
for i in range(len(dims) - 2):
|
||
layers += [nn.Linear(dims[i], dims[i + 1]), activation()]
|
||
layers += [nn.Linear(dims[-2], dims[-1])]
|
||
self.net = nn.Sequential(*layers)
|
||
|
||
def forward(self, x):
|
||
return self.net(x)
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
# 原始配置
|
||
self.horizon = args["horizon"]
|
||
self.output_dim = args["output_dim"]
|
||
self.seq_len = args.get("in_len", 12)
|
||
self.hidden_dim = args.get("hidden_dim", 64)
|
||
self.num_nodes = args["num_nodes"]
|
||
self.embed_dim = args.get("embed_dim", 16)
|
||
|
||
# 时间嵌入
|
||
self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5))
|
||
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
||
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
||
|
||
# 输入流量投影
|
||
self.input_proj = MLP(
|
||
in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim
|
||
)
|
||
|
||
# --------- 新增:专家与门控网络 ---------
|
||
self.num_experts = 3
|
||
self.trend_expert = TrendExpert(self.hidden_dim)
|
||
self.periodic_expert = PeriodicExpert(self.hidden_dim)
|
||
self.physical_expert = PhysicalExpert(
|
||
self.num_nodes, self.embed_dim, self.hidden_dim
|
||
)
|
||
# 门控网络,根据 h0 动态生成专家权重
|
||
self.gating = nn.Sequential(
|
||
nn.Linear(self.hidden_dim, self.hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(self.hidden_dim, self.num_experts),
|
||
)
|
||
|
||
# 两个 Sandwich 模块
|
||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
|
||
# 输出投影
|
||
self.out_proj = MLP(
|
||
in_dim=self.hidden_dim,
|
||
hidden_dims=[2 * self.hidden_dim],
|
||
out_dim=self.horizon * self.output_dim,
|
||
)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, N, D_total)
|
||
x_flow = x[..., 0] # 流量
|
||
x_time = x[..., 1] # 时间槽归一化
|
||
x_day = x[..., 2] # 星期几
|
||
B, T, N = x_flow.shape
|
||
assert T == self.seq_len
|
||
|
||
# 1) 流量历史投影
|
||
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||
|
||
# 2) 时间与星期嵌入
|
||
t_idx = (
|
||
x_time[
|
||
:,
|
||
-1,
|
||
:,
|
||
]
|
||
* (self.time_slots - 1)
|
||
).long()
|
||
d_idx = x_day[
|
||
:,
|
||
-1,
|
||
:,
|
||
].long()
|
||
time_emb = self.time_embedding(t_idx)
|
||
day_emb = self.day_embedding(d_idx)
|
||
# 注入
|
||
h0 = h0 + time_emb + day_emb
|
||
|
||
# 3) 门控融合专家输出
|
||
g = self.gating(h0) # (B, N, 3)
|
||
g = F.softmax(g, dim=-1)
|
||
h_trend = self.trend_expert(h0)
|
||
h_periodic = self.periodic_expert(h0)
|
||
h_physical = self.physical_expert(h0)
|
||
# 加权相加
|
||
h0 = g[..., 0:1] * h_trend + g[..., 1:2] * h_periodic + g[..., 2:3] * h_physical
|
||
|
||
# 4) Sandwich + 残差
|
||
h1 = self.sandwich1(h0)
|
||
h1 = h1 + h0
|
||
h2 = self.sandwich2(h1)
|
||
|
||
# 5) 输出
|
||
out = self.out_proj(h2)
|
||
out = out.view(B, N, self.horizon, self.output_dim)
|
||
out = out.permute(0, 2, 1, 3)
|
||
return out
|