TrafficWheel/model/MTGNN/layer.py

328 lines
10 KiB
Python

from __future__ import division
import torch
import torch.nn as nn
from torch.nn import init
import numbers
import torch.nn.functional as F
class nconv(nn.Module):
def __init__(self):
super(nconv,self).__init__()
def forward(self,x, A):
x = torch.einsum('ncwl,vw->ncvl',(x,A))
return x.contiguous()
class dy_nconv(nn.Module):
def __init__(self):
super(dy_nconv,self).__init__()
def forward(self,x, A):
x = torch.einsum('ncvl,nvwl->ncwl',(x,A))
return x.contiguous()
class linear(nn.Module):
def __init__(self,c_in,c_out,bias=True):
super(linear,self).__init__()
self.mlp = torch.nn.Conv2d(c_in, c_out, kernel_size=(1, 1), padding=(0,0), stride=(1,1), bias=bias)
def forward(self,x):
return self.mlp(x)
class prop(nn.Module):
def __init__(self,c_in,c_out,gdep,dropout,alpha):
super(prop, self).__init__()
self.nconv = nconv()
self.mlp = linear(c_in,c_out)
self.gdep = gdep
self.dropout = dropout
self.alpha = alpha
def forward(self,x,adj):
adj = adj + torch.eye(adj.size(0)).to(x.device)
d = adj.sum(1)
h = x
dv = d
a = adj / dv.view(-1, 1)
for i in range(self.gdep):
h = self.alpha*x + (1-self.alpha)*self.nconv(h,a)
ho = self.mlp(h)
return ho
class mixprop(nn.Module):
def __init__(self,c_in,c_out,gdep,dropout,alpha):
super(mixprop, self).__init__()
self.nconv = nconv()
self.mlp = linear((gdep+1)*c_in,c_out)
self.gdep = gdep
self.dropout = dropout
self.alpha = alpha
def forward(self,x,adj):
adj = adj + torch.eye(adj.size(0)).to(x.device)
d = adj.sum(1)
h = x
out = [h]
a = adj / d.view(-1, 1)
for i in range(self.gdep):
h = self.alpha*x + (1-self.alpha)*self.nconv(h,a)
out.append(h)
ho = torch.cat(out,dim=1)
ho = self.mlp(ho)
return ho
class dy_mixprop(nn.Module):
def __init__(self,c_in,c_out,gdep,dropout,alpha):
super(dy_mixprop, self).__init__()
self.nconv = dy_nconv()
self.mlp1 = linear((gdep+1)*c_in,c_out)
self.mlp2 = linear((gdep+1)*c_in,c_out)
self.gdep = gdep
self.dropout = dropout
self.alpha = alpha
self.lin1 = linear(c_in,c_in)
self.lin2 = linear(c_in,c_in)
def forward(self,x):
#adj = adj + torch.eye(adj.size(0)).to(x.device)
#d = adj.sum(1)
x1 = torch.tanh(self.lin1(x))
x2 = torch.tanh(self.lin2(x))
adj = self.nconv(x1.transpose(2,1),x2)
adj0 = torch.softmax(adj, dim=2)
adj1 = torch.softmax(adj.transpose(2,1), dim=2)
h = x
out = [h]
for i in range(self.gdep):
h = self.alpha*x + (1-self.alpha)*self.nconv(h,adj0)
out.append(h)
ho = torch.cat(out,dim=1)
ho1 = self.mlp1(ho)
h = x
out = [h]
for i in range(self.gdep):
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, adj1)
out.append(h)
ho = torch.cat(out, dim=1)
ho2 = self.mlp2(ho)
return ho1+ho2
class dilated_1D(nn.Module):
def __init__(self, cin, cout, dilation_factor=2):
super(dilated_1D, self).__init__()
self.tconv = nn.ModuleList()
self.kernel_set = [2,3,6,7]
self.tconv = nn.Conv2d(cin,cout,(1,7),dilation=(1,dilation_factor))
def forward(self,input):
x = self.tconv(input)
return x
class dilated_inception(nn.Module):
def __init__(self, cin, cout, dilation_factor=2):
super(dilated_inception, self).__init__()
self.tconv = nn.ModuleList()
self.kernel_set = [2,3,6,7]
cout = int(cout/len(self.kernel_set))
for kern in self.kernel_set:
self.tconv.append(nn.Conv2d(cin,cout,(1,kern),dilation=(1,dilation_factor)))
def forward(self,input):
x = []
for i in range(len(self.kernel_set)):
x.append(self.tconv[i](input))
for i in range(len(self.kernel_set)):
x[i] = x[i][...,-x[-1].size(3):]
x = torch.cat(x,dim=1)
return x
class graph_constructor(nn.Module):
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
super(graph_constructor, self).__init__()
self.nnodes = nnodes
if static_feat is not None:
xd = static_feat.shape[1]
self.lin1 = nn.Linear(xd, dim)
self.lin2 = nn.Linear(xd, dim)
else:
self.emb1 = nn.Embedding(nnodes, dim)
self.emb2 = nn.Embedding(nnodes, dim)
self.lin1 = nn.Linear(dim,dim)
self.lin2 = nn.Linear(dim,dim)
self.device = device
self.k = k
self.dim = dim
self.alpha = alpha
self.static_feat = static_feat
def forward(self, idx):
if self.static_feat is None:
nodevec1 = self.emb1(idx)
nodevec2 = self.emb2(idx)
else:
nodevec1 = self.static_feat[idx,:]
nodevec2 = nodevec1
nodevec1 = torch.tanh(self.alpha*self.lin1(nodevec1))
nodevec2 = torch.tanh(self.alpha*self.lin2(nodevec2))
a = torch.mm(nodevec1, nodevec2.transpose(1,0))-torch.mm(nodevec2, nodevec1.transpose(1,0))
adj = F.relu(torch.tanh(self.alpha*a))
mask = torch.zeros(idx.size(0), idx.size(0)).to(self.device)
mask.fill_(float('0'))
s1,t1 = (adj + torch.rand_like(adj)*0.01).topk(self.k,1)
mask.scatter_(1,t1,s1.fill_(1))
adj = adj*mask
return adj
def fullA(self, idx):
if self.static_feat is None:
nodevec1 = self.emb1(idx)
nodevec2 = self.emb2(idx)
else:
nodevec1 = self.static_feat[idx,:]
nodevec2 = nodevec1
nodevec1 = torch.tanh(self.alpha*self.lin1(nodevec1))
nodevec2 = torch.tanh(self.alpha*self.lin2(nodevec2))
a = torch.mm(nodevec1, nodevec2.transpose(1,0))-torch.mm(nodevec2, nodevec1.transpose(1,0))
adj = F.relu(torch.tanh(self.alpha*a))
return adj
class graph_global(nn.Module):
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
super(graph_global, self).__init__()
self.nnodes = nnodes
self.A = nn.Parameter(torch.randn(nnodes, nnodes).to(device), requires_grad=True).to(device)
def forward(self, idx):
return F.relu(self.A)
class graph_undirected(nn.Module):
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
super(graph_undirected, self).__init__()
self.nnodes = nnodes
if static_feat is not None:
xd = static_feat.shape[1]
self.lin1 = nn.Linear(xd, dim)
else:
self.emb1 = nn.Embedding(nnodes, dim)
self.lin1 = nn.Linear(dim,dim)
self.device = device
self.k = k
self.dim = dim
self.alpha = alpha
self.static_feat = static_feat
def forward(self, idx):
if self.static_feat is None:
nodevec1 = self.emb1(idx)
nodevec2 = self.emb1(idx)
else:
nodevec1 = self.static_feat[idx,:]
nodevec2 = nodevec1
nodevec1 = torch.tanh(self.alpha*self.lin1(nodevec1))
nodevec2 = torch.tanh(self.alpha*self.lin1(nodevec2))
a = torch.mm(nodevec1, nodevec2.transpose(1,0))
adj = F.relu(torch.tanh(self.alpha*a))
mask = torch.zeros(idx.size(0), idx.size(0)).to(self.device)
mask.fill_(float('0'))
s1,t1 = adj.topk(self.k,1)
mask.scatter_(1,t1,s1.fill_(1))
adj = adj*mask
return adj
class graph_directed(nn.Module):
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
super(graph_directed, self).__init__()
self.nnodes = nnodes
if static_feat is not None:
xd = static_feat.shape[1]
self.lin1 = nn.Linear(xd, dim)
self.lin2 = nn.Linear(xd, dim)
else:
self.emb1 = nn.Embedding(nnodes, dim)
self.emb2 = nn.Embedding(nnodes, dim)
self.lin1 = nn.Linear(dim,dim)
self.lin2 = nn.Linear(dim,dim)
self.device = device
self.k = k
self.dim = dim
self.alpha = alpha
self.static_feat = static_feat
def forward(self, idx):
if self.static_feat is None:
nodevec1 = self.emb1(idx)
nodevec2 = self.emb2(idx)
else:
nodevec1 = self.static_feat[idx,:]
nodevec2 = nodevec1
nodevec1 = torch.tanh(self.alpha*self.lin1(nodevec1))
nodevec2 = torch.tanh(self.alpha*self.lin2(nodevec2))
a = torch.mm(nodevec1, nodevec2.transpose(1,0))
adj = F.relu(torch.tanh(self.alpha*a))
mask = torch.zeros(idx.size(0), idx.size(0)).to(self.device)
mask.fill_(float('0'))
s1,t1 = adj.topk(self.k,1)
mask.scatter_(1,t1,s1.fill_(1))
adj = adj*mask
return adj
class LayerNorm(nn.Module):
__constants__ = ['normalized_shape', 'weight', 'bias', 'eps', 'elementwise_affine']
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
self.normalized_shape = tuple(normalized_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input, idx):
if self.elementwise_affine:
return F.layer_norm(input, tuple(input.shape[1:]), self.weight[:,idx,:], self.bias[:,idx,:], self.eps)
else:
return F.layer_norm(input, tuple(input.shape[1:]), self.weight, self.bias, self.eps)
def extra_repr(self):
return '{normalized_shape}, eps={eps}, ' \
'elementwise_affine={elementwise_affine}'.format(**self.__dict__)