143 lines
4.5 KiB
Python
Executable File
143 lines
4.5 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
"""
|
||
频域处理版双层三明治结构模型:
|
||
1. 先做傅里叶变换 -> 频域中做三明治结构(时间-空间-时间)
|
||
2. 处理完成后回到时域 -> 输出预测
|
||
"""
|
||
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
self.nodevec2 = nn.Parameter(
|
||
torch.randn(node_num, embed_dim), requires_grad=True
|
||
)
|
||
|
||
def forward(self):
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = input_dim == output_dim
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
# x: (B, N, C)
|
||
res = x
|
||
x = torch.matmul(adj, x)
|
||
x = self.theta(x)
|
||
x = x + (res if self.residual else self.res_proj(res))
|
||
return F.relu(x)
|
||
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(
|
||
embed_dim=input_dim, num_heads=4, batch_first=True
|
||
)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim),
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, N, C)
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
return x
|
||
|
||
|
||
class SandwichBlock(nn.Module):
|
||
"""
|
||
时间-空间-时间结构
|
||
输入/输出: (B, N, C)
|
||
"""
|
||
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
|
||
def forward(self, h):
|
||
h1 = self.manba1(h)
|
||
adj = self.graph_constructor()
|
||
h2 = self.gc(h1, adj)
|
||
h3 = self.manba2(h2)
|
||
return h3
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args["horizon"]
|
||
self.output_dim = args["output_dim"]
|
||
self.seq_len = args.get("in_len", 12)
|
||
self.hidden_dim = args.get("hidden_dim", 64)
|
||
self.num_nodes = args["num_nodes"]
|
||
self.embed_dim = args.get("embed_dim", 16)
|
||
|
||
self.freq_len = self.seq_len // 2 + 1 # rfft输出的频率维度
|
||
|
||
# 映射到频域隐藏维度
|
||
self.freq_proj = nn.Linear(self.freq_len * 2, self.hidden_dim)
|
||
|
||
# 频域中的三明治结构
|
||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
|
||
# 回到频域 -> 时域输出
|
||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, N, D_total)
|
||
x_main = x[..., 0] # (B, T, N)
|
||
B, T, N = x_main.shape
|
||
assert T == self.seq_len
|
||
|
||
# 傅里叶变换:对每个节点的时间序列进行 rfft
|
||
Xf = torch.fft.rfft(x_main, dim=1) # (B, F, N), complex
|
||
|
||
# 拆分实部虚部,堆叠为 real + imag 两通道
|
||
real = Xf.real.permute(0, 2, 1) # (B, N, F)
|
||
imag = Xf.imag.permute(0, 2, 1) # (B, N, F)
|
||
freq_input = torch.cat([real, imag], dim=-1) # (B, N, 2F)
|
||
|
||
# 维度映射
|
||
h = self.freq_proj(freq_input) # (B, N, hidden_dim)
|
||
|
||
# 在频域中做三明治结构
|
||
h1 = self.sandwich1(h)
|
||
h1 = h1 + h # 残差连接
|
||
h2 = self.sandwich2(h1)
|
||
|
||
# 输出映射到频率域(输出 horizon * output_dim)
|
||
out_freq = self.out_proj(h2) # (B, N, H*D)
|
||
out_freq = out_freq.view(B, N, self.horizon, self.output_dim)
|
||
|
||
# 将频域预测简单映射为时域结果
|
||
out = out_freq.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
|
||
return out
|