147 lines
5.0 KiB
Python
Executable File
147 lines
5.0 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
"""
|
||
含时间/空间额外特征的双层 时间->空间->时间 三明治结构模型
|
||
使用 x[...,0] 主通道,x[...,1] time_in_day,x[...,2] day_in_week
|
||
通过独立投影融合三路信息
|
||
无改进
|
||
"""
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||
|
||
def forward(self):
|
||
# 构造动态邻接矩阵 (N, N)
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = (input_dim == output_dim)
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
# x: (B, N, C)
|
||
res = x
|
||
x = torch.matmul(adj, x)
|
||
x = self.theta(x)
|
||
x = x + (res if self.residual else self.res_proj(res))
|
||
return F.relu(x)
|
||
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim)
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, N, C) 视 N 维为时间序列长度
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
return x
|
||
|
||
|
||
class SandwichBlock(nn.Module):
|
||
"""
|
||
时间 -> 空间 -> 时间 三明治结构
|
||
输入/输出: (B, N, hidden_dim)
|
||
"""
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
|
||
def forward(self, h):
|
||
# h: (B, N, hidden_dim)
|
||
# 第一步:时间注意力
|
||
h1 = self.manba1(h)
|
||
# 第二步:空间卷积
|
||
adj = self.graph_constructor()
|
||
h2 = self.gc(h1, adj)
|
||
# 第三步:时间注意力
|
||
h3 = self.manba2(h2)
|
||
return h3
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args['horizon']
|
||
self.output_dim = args['output_dim']
|
||
self.seq_len = args.get('in_len', 12)
|
||
self.hidden_dim = args.get('hidden_dim', 64)
|
||
self.num_nodes = args['num_nodes']
|
||
self.embed_dim = args.get('embed_dim', 16)
|
||
|
||
# 对三路输入分别投影到隐藏维度
|
||
self.main_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||
self.time_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||
self.week_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||
|
||
# 双层 时间->空间->时间 三明治块
|
||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
|
||
# 输出映射
|
||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, N, D_total)
|
||
x_main = x[..., 0] # (B, T, N)
|
||
x_time = x[..., 1] # (B, T, N)
|
||
x_week = x[..., 2] # (B, T, N)
|
||
B, T, N = x_main.shape
|
||
assert T == self.seq_len
|
||
|
||
# 将三路特征分别映射后叠加
|
||
x_main_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||
h_main = self.main_proj(x_main_flat).view(B, N, self.hidden_dim)
|
||
x_time_flat = x_time.permute(0, 2, 1).reshape(B * N, T)
|
||
h_time = self.time_proj(x_time_flat).view(B, N, self.hidden_dim)
|
||
x_week_flat = x_week.permute(0, 2, 1).reshape(B * N, T)
|
||
h_week = self.week_proj(x_week_flat).view(B, N, self.hidden_dim)
|
||
|
||
# 初始隐藏表示,融合三路信息
|
||
h0 = h_main + h_time + h_week
|
||
|
||
# 第一层三明治 + 残差
|
||
h1 = self.sandwich1(h0)
|
||
h1 = h1 + h0
|
||
# 第二层三明治
|
||
h2 = self.sandwich2(h1)
|
||
|
||
# 输出
|
||
out = self.out_proj(h2)
|
||
out = out.view(B, N, self.horizon, self.output_dim)
|
||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, D_out)
|
||
return out
|
||
|
||
# 示例测试
|
||
# args = {'horizon':12,'output_dim':1,'in_len':12,'hidden_dim':64,'num_nodes':307,'embed_dim':16}
|
||
# model = EXP(args)
|
||
# x = torch.randn(16, 12, 307, 3)
|
||
# print(model(x).shape) # (16,12,307,1) |