TrafficWheel/model/AGCRN/AGCRN.py

100 lines
3.6 KiB
Python
Executable File

import torch
import torch.nn as nn
from model.AGCRN.AGCRNCell import AGCRNCell
class AVWDCRNN(nn.Module):
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1):
super(AVWDCRNN, self).__init__()
assert num_layers >= 1, "At least one DCRNN layer in the Encoder."
self.node_num = node_num
self.input_dim = dim_in
self.num_layers = num_layers
self.dcrnn_cells = nn.ModuleList()
self.dcrnn_cells.append(AGCRNCell(node_num, dim_in, dim_out, cheb_k, embed_dim))
for _ in range(1, num_layers):
self.dcrnn_cells.append(
AGCRNCell(node_num, dim_out, dim_out, cheb_k, embed_dim)
)
def forward(self, x, init_state, node_embeddings):
# shape of x: (B, T, N, D)
# shape of init_state: (num_layers, B, N, hidden_dim)
assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim
seq_length = x.shape[1]
current_inputs = x
output_hidden = []
for i in range(self.num_layers):
state = init_state[i]
inner_states = []
for t in range(seq_length):
state = self.dcrnn_cells[i](
current_inputs[:, t, :, :], state, node_embeddings
)
inner_states.append(state)
output_hidden.append(state)
current_inputs = torch.stack(inner_states, dim=1)
# current_inputs: the outputs of last layer: (B, T, N, hidden_dim)
# output_hidden: the last state for each layer: (num_layers, B, N, hidden_dim)
# last_state: (B, N, hidden_dim)
return current_inputs, output_hidden
def init_hidden(self, batch_size):
init_states = []
for i in range(self.num_layers):
init_states.append(self.dcrnn_cells[i].init_hidden_state(batch_size))
return torch.stack(init_states, dim=0) # (num_layers, B, N, hidden_dim)
class AGCRN(nn.Module):
def __init__(self, args):
super(AGCRN, self).__init__()
self.num_node = args["num_nodes"]
self.input_dim = args["input_dim"]
self.hidden_dim = args["rnn_units"]
self.output_dim = args["output_dim"]
self.horizon = args["horizon"]
self.num_layers = args["num_layers"]
self.default_graph = args["default_graph"]
self.node_embeddings = nn.Parameter(
torch.randn(self.num_node, args["embed_dim"]), requires_grad=True
)
self.encoder = AVWDCRNN(
args["num_nodes"],
args["input_dim"],
args["rnn_units"],
args["cheb_k"],
args["embed_dim"],
args["num_layers"],
)
# predictor
self.end_conv = nn.Conv2d(
1,
args["horizon"] * self.output_dim,
kernel_size=(1, self.hidden_dim),
bias=True,
)
def forward(self, source):
# source: B, T_1, N, D
# target: B, T_2, N, D
# supports = F.softmax(F.relu(torch.mm(self.nodevec1, self.nodevec1.transpose(0,1))), dim=1)
init_state = self.encoder.init_hidden(source.shape[0])
output, _ = self.encoder(
source[..., :1], init_state, self.node_embeddings
) # B, T, N, hidden
output = output[:, -1:, :, :] # B, 1, N, hidden
# CNN based predictor
output = self.end_conv((output)) # B, T*C, N, 1
output = output.squeeze(-1).reshape(
-1, self.horizon, self.output_dim, self.num_node
)
output = output.permute(0, 1, 3, 2) # B, T, N, C
return output