124 lines
6.0 KiB
Python
124 lines
6.0 KiB
Python
import torch, torch.nn as nn, torch.nn.functional as F
|
||
from collections import OrderedDict
|
||
|
||
|
||
class DGCRM(nn.Module):
|
||
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1):
|
||
super().__init__()
|
||
self.node_num, self.input_dim, self.num_layers = node_num, dim_in, num_layers
|
||
self.cells = nn.ModuleList([
|
||
DDGCRNCell(node_num, dim_in if i == 0 else dim_out, dim_out, cheb_k, embed_dim)
|
||
for i in range(num_layers)
|
||
])
|
||
|
||
def forward(self, x, init_state, node_embeddings):
|
||
# x: (B, T, N, D)
|
||
assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim
|
||
for i in range(self.num_layers):
|
||
state, inner = init_state[i].to(x.device), []
|
||
for t in range(x.shape[1]):
|
||
state = self.cells[i](x[:, t, :, :], state, [node_embeddings[0][:, t, :, :], node_embeddings[1]])
|
||
inner.append(state)
|
||
init_state[i] = state
|
||
x = torch.stack(inner, dim=1)
|
||
return x, init_state
|
||
|
||
def init_hidden(self, bs):
|
||
return torch.stack([cell.init_hidden_state(bs) for cell in self.cells], dim=0)
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.num_node, self.input_dim, self.hidden_dim = args['num_nodes'], args['input_dim'], args['rnn_units']
|
||
self.output_dim, self.horizon, self.num_layers = args['output_dim'], args['horizon'], args['num_layers']
|
||
self.use_day, self.use_week = args['use_day'], args['use_week']
|
||
self.node_embeddings1 = nn.Parameter(torch.randn(self.num_node, args['embed_dim']))
|
||
# 第二套节点向量已不再使用,减少参数
|
||
self.T_i_D_emb = nn.Parameter(torch.empty(288, args['embed_dim']))
|
||
self.D_i_W_emb = nn.Parameter(torch.empty(7, args['embed_dim']))
|
||
self.drop = nn.Dropout(0.1)
|
||
# 采用单编码器,减少一次前向计算
|
||
self.encoder = DGCRM(self.num_node, self.input_dim, self.hidden_dim,
|
||
args['cheb_order'], args['embed_dim'], self.num_layers)
|
||
# 主预测头:基础预测
|
||
self.base_conv = nn.Conv2d(1, self.horizon * self.output_dim, (1, self.hidden_dim))
|
||
# 残差预测头:利用最近时刻的输入信息进行修正,输入通道为 hidden_dim+1
|
||
self.res_conv = nn.Conv2d(1, self.horizon * self.output_dim, (1, self.hidden_dim + 1))
|
||
|
||
def forward(self, source):
|
||
# source: (B, T, N, D_total) 其中第0维为主观测,第1、2维为时间编码
|
||
node_embed = self.node_embeddings1
|
||
if self.use_day:
|
||
node_embed = node_embed * self.T_i_D_emb[(source[..., 1] * 288).long()]
|
||
if self.use_week:
|
||
node_embed = node_embed * self.D_i_W_emb[source[..., 2].long()]
|
||
node_embeddings = [node_embed, self.node_embeddings1]
|
||
inp = source[..., 0].unsqueeze(-1) # (B, T, N, 1)
|
||
init = self.encoder.init_hidden(inp.shape[0])
|
||
enc_out, _ = self.encoder(inp, init, node_embeddings)
|
||
# 取最后时刻的隐状态作为表示,shape: (B, 1, N, hidden_dim)
|
||
rep = self.drop(enc_out[:, -1:, :, :])
|
||
# 基础预测
|
||
base = self.base_conv(rep)
|
||
# 为修正分支拼接最近时刻的原始输入(取最后一帧)作为残差补偿信息,扩充通道数
|
||
res_in = torch.cat([rep, inp[:, -1:, :, :]], dim=-1) # (B, 1, N, hidden_dim+1)
|
||
res = self.res_conv(res_in)
|
||
return base + res
|
||
|
||
|
||
class DDGCRNCell(nn.Module):
|
||
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim):
|
||
super().__init__()
|
||
self.node_num, self.hidden_dim = node_num, dim_out
|
||
self.gate = DGCN(dim_in + dim_out, 2 * dim_out, cheb_k, embed_dim, node_num)
|
||
self.update = DGCN(dim_in + dim_out, dim_out, cheb_k, embed_dim, node_num)
|
||
self.ln = nn.LayerNorm(dim_out)
|
||
|
||
def forward(self, x, state, node_embeddings):
|
||
inp = torch.cat((x, state), -1)
|
||
z_r = torch.sigmoid(self.gate(inp, node_embeddings))
|
||
z, r = torch.split(z_r, self.hidden_dim, -1)
|
||
hc = torch.tanh(self.update(torch.cat((x, z * state), -1), node_embeddings))
|
||
out = r * state + (1 - r) * hc
|
||
return self.ln(out)
|
||
|
||
def init_hidden_state(self, bs):
|
||
return torch.zeros(bs, self.node_num, self.hidden_dim)
|
||
|
||
|
||
class DGCN(nn.Module):
|
||
def __init__(self, dim_in, dim_out, cheb_k, embed_dim, num_nodes):
|
||
super().__init__()
|
||
self.cheb_k, self.embed_dim = cheb_k, embed_dim
|
||
self.weights_pool = nn.Parameter(torch.FloatTensor(embed_dim, cheb_k, dim_in, dim_out))
|
||
self.weights = nn.Parameter(torch.FloatTensor(cheb_k, dim_in, dim_out))
|
||
self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, dim_out))
|
||
self.bias = nn.Parameter(torch.FloatTensor(dim_out))
|
||
self.fc = nn.Sequential(OrderedDict([
|
||
('fc1', nn.Linear(dim_in, 16)),
|
||
('sigmoid1', nn.Sigmoid()),
|
||
('fc2', nn.Linear(16, 2)),
|
||
('sigmoid2', nn.Sigmoid()),
|
||
('fc3', nn.Linear(2, embed_dim))
|
||
]))
|
||
# 预注册单位矩阵,避免每次构造
|
||
self.register_buffer('eye', torch.eye(num_nodes))
|
||
|
||
def forward(self, x, node_embeddings):
|
||
supp1 = self.eye.to(node_embeddings[0].device)
|
||
filt = self.fc(x)
|
||
nodevec = torch.tanh(node_embeddings[0] * filt)
|
||
supp2 = self.get_laplacian(F.relu(torch.matmul(nodevec, nodevec.transpose(2, 1))), supp1)
|
||
x_g = torch.stack([torch.einsum("nm,bmc->bnc", supp1, x),
|
||
torch.einsum("bnm,bmc->bnc", supp2, x)], dim=1)
|
||
weights = torch.einsum('nd,dkio->nkio', node_embeddings[1], self.weights_pool)
|
||
bias = torch.matmul(node_embeddings[1], self.bias_pool)
|
||
return torch.einsum('bnki,nkio->bno', x_g.permute(0, 2, 1, 3), weights) + bias
|
||
|
||
@staticmethod
|
||
def get_laplacian(graph, I, normalize=True):
|
||
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5))
|
||
return torch.matmul(torch.matmul(D_inv, graph), D_inv) if normalize else torch.matmul(
|
||
torch.matmul(D_inv, graph + I), D_inv)
|