TrafficWheel/model/STGNCDE/BasicTrainer_cde.py

361 lines
14 KiB
Python
Executable File

import torch
import math
import os
import time
import copy
import numpy as np
from utils.logger import get_logger
from lib.metrics import All_Metrics
from lib.TrainInits import print_model_parameters
from utils.training_stats import TrainingStats
class Trainer(object):
def __init__(
self,
model,
vector_field_f,
vector_field_g,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler,
device,
times,
w,
):
super(Trainer, self).__init__()
self.model = model
self.vector_field_f = vector_field_f
self.vector_field_g = vector_field_g
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
if val_loader != None:
self.val_per_epoch = len(val_loader)
self.best_path = os.path.join(self.args.log_dir, "best_model.pth")
self.loss_figure_path = os.path.join(self.args.log_dir, "loss.png")
# log
if os.path.isdir(args.log_dir) == False and not args.debug:
os.makedirs(args.log_dir, exist_ok=True)
self.logger = get_logger(args.log_dir, name=args.model, debug=args.debug)
self.logger.info("Experiment log path in: {}".format(args.log_dir))
total_param = print_model_parameters(model, only_num=False)
for arg, value in sorted(vars(args).items()):
self.logger.info("Argument %s: %r", arg, value)
self.logger.info(self.model)
self.logger.info("Total params: {}".format(str(total_param)))
self.device = device
self.times = times.to(self.device, dtype=torch.float)
self.w = w
# Stats tracker
self.stats = TrainingStats(device=device)
def val_epoch(self, epoch, val_dataloader):
self.model.eval()
total_val_loss = 0
with torch.no_grad():
for batch_idx, batch in enumerate(self.val_loader):
start_time = time.time()
# for iter, batch in enumerate(val_dataloader):
batch = tuple(b.to(self.device, dtype=torch.float) for b in batch)
*valid_coeffs, target = batch
# data = data[..., :self.args.input_dim]
label = target[..., : self.args.output_dim]
output = self.model(self.times, valid_coeffs)
if self.args.real_value:
label = self.scaler.inverse_transform(label)
loss = self.loss(output.cuda(), label)
# a whole batch of Metr_LA is filtered
if not torch.isnan(loss):
total_val_loss += loss.item()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, "val")
val_loss = total_val_loss / len(val_dataloader)
self.logger.info(
"**********Val Epoch {}: average Loss: {:.6f}".format(epoch, val_loss)
)
self.stats.record_memory_usage()
if self.args.tensorboard:
self.w.add_scalar(f"valid/loss", val_loss, epoch)
return val_loss
def train_epoch(self, epoch):
self.model.train()
total_loss = 0
# for batch_idx, (data, target) in enumerate(self.train_loader):
# for batch_idx, (data, target) in enumerate(self.train_loader):
for batch_idx, batch in enumerate(self.train_loader):
start_time = time.time()
batch = tuple(b.to(self.device, dtype=torch.float) for b in batch)
*train_coeffs, target = batch
# data = data[..., :self.args.input_dim]
label = target[..., : self.args.output_dim] # (..., 1)
self.optimizer.zero_grad()
# #teacher_forcing for RNN encoder-decoder model
# #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps
# if self.args.teacher_forcing:
# global_step = (epoch - 1) * self.train_per_epoch + batch_idx
# teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps)
# else:
# teacher_forcing_ratio = 1.
# data and target shape: B, T, N, F; output shape: B, T, N, F
output = self.model(self.times, train_coeffs)
# output = self.model(train_coeffs, target, teacher_forcing_ratio=teacher_forcing_ratio)
if self.args.real_value:
label = self.scaler.inverse_transform(label)
loss = self.loss(output.cuda(), label)
# loss = _add_weight_regularisation(loss, self.vector_field_g) #TODO: regularization
# loss = _add_weight_regularisation(loss, self.vector_field_f) #TODO: regularization
loss.backward()
# add max grad clipping
if self.args.grad_norm:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args.max_grad_norm
)
self.optimizer.step()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, "train")
total_loss += loss.item()
# log information
if batch_idx % self.args.log_step == 0:
self.logger.info(
"Train Epoch {}: {}/{} Loss: {:.6f}".format(
epoch, batch_idx, self.train_per_epoch, loss.item()
)
)
train_epoch_loss = total_loss / self.train_per_epoch
self.logger.info(
"**********Train Epoch {}: averaged Loss: {:.6f}".format(
epoch, train_epoch_loss
)
)
self.stats.record_memory_usage()
if self.args.tensorboard:
self.w.add_scalar(f"train/loss", train_epoch_loss, epoch)
# learning rate decay
if self.args.lr_decay:
self.lr_scheduler.step()
return train_epoch_loss
def train(self):
best_model = None
best_loss = float("inf")
not_improved_count = 0
train_loss_list = []
val_loss_list = []
self.stats.start_training()
start_time = time.time()
for epoch in range(1, self.args.epochs + 1):
# epoch_time = time.time()
train_epoch_loss = self.train_epoch(epoch)
# print(time.time()-epoch_time)
# exit()
if self.val_loader == None:
val_dataloader = self.test_loader
else:
val_dataloader = self.val_loader
val_epoch_loss = self.val_epoch(epoch, val_dataloader)
# print('LR:', self.optimizer.param_groups[0]['lr'])
train_loss_list.append(train_epoch_loss)
val_loss_list.append(val_epoch_loss)
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
# if self.val_loader == None:
# val_epoch_loss = train_epoch_loss
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_state = True
else:
not_improved_count += 1
best_state = False
# early stop
if self.args.early_stop:
if not_improved_count == self.args.early_stop_patience:
self.logger.info(
"Validation performance didn't improve for {} epochs. "
"Training stops.".format(self.args.early_stop_patience)
)
break
# save the best state
if best_state == True:
self.logger.info(
"*********************************Current best model saved!"
)
best_model = copy.deepcopy(self.model.state_dict())
# if epoch%10==0:#test
# self.model.load_state_dict(best_model)
# #self.val_epoch(self.args.epochs, self.test_loader)
# self.test_simple(self.model, self.args, self.test_loader, self.scaler, self.logger, None, self.times)
training_time = time.time() - start_time
self.logger.info(
"Total training time: {:.4f}min, best loss: {:.6f}".format(
(training_time / 60), best_loss
)
)
self.stats.end_training()
self.stats.report(self.logger)
try:
total_params = sum(
p.numel() for p in self.model.parameters() if p.requires_grad
)
self.logger.info(f"Trainable params: {total_params}")
except Exception:
pass
# save the best model to file
if not self.args.debug:
torch.save(best_model, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
# if epoch==10:#test
# self.model.load_state_dict(best_model)
# #self.val_epoch(self.args.epochs, self.test_loader)
# self.test(self.model, self.args, self.test_loader, self.scaler, self.logger, None, self.times)
self.model.load_state_dict(best_model)
# self.val_epoch(self.args.epochs, self.test_loader)
self.test(
self.model,
self.args,
self.test_loader,
self.scaler,
self.logger,
None,
self.times,
)
def save_checkpoint(self):
state = {
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"config": self.args,
}
torch.save(state, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
@staticmethod
def test(model, args, data_loader, scaler, logger, path, times):
if path != None:
check_point = torch.load(path)
state_dict = check_point["state_dict"]
args = check_point["config"]
model.load_state_dict(state_dict)
model.to(args.device)
model.eval()
y_pred = []
y_true = []
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
batch = tuple(b.to(args.device, dtype=torch.float) for b in batch)
*test_coeffs, target = batch
label = target[..., : args.output_dim]
output = model(times.to(args.device, dtype=torch.float), test_coeffs)
y_true.append(label)
y_pred.append(output)
y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
if args.real_value:
y_pred = torch.cat(y_pred, dim=0)
else:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
np.save(
args.log_dir + "/{}_true.npy".format(args.dataset), y_true.cpu().numpy()
)
np.save(
args.log_dir + "/{}_pred.npy".format(args.dataset), y_pred.cpu().numpy()
)
for t in range(y_true.shape[1]):
mae, rmse, mape, _, _ = All_Metrics(
y_pred[:, t, ...], y_true[:, t, ...], args.mae_thresh, args.mape_thresh
)
logger.info(
"Horizon {:02d}, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
t + 1, mae, rmse, mape * 100
)
)
mae, rmse, mape, _, _ = All_Metrics(
y_pred, y_true, args.mae_thresh, args.mape_thresh
)
logger.info(
"Average Horizon, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
mae, rmse, mape * 100
)
)
@staticmethod
def test_simple(model, args, data_loader, scaler, logger, path, times):
if path != None:
check_point = torch.load(path)
state_dict = check_point["state_dict"]
args = check_point["config"]
model.load_state_dict(state_dict)
model.to(args.device)
model.eval()
y_pred = []
y_true = []
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
# for batch_idx, (data, target) in enumerate(data_loader):
batch = tuple(b.to(args.device, dtype=torch.float) for b in batch)
*test_coeffs, target = batch
# data = data[..., :args.input_dim]
label = target[..., : args.output_dim]
output = model(times.to(args.device, dtype=torch.float), test_coeffs)
y_true.append(label)
y_pred.append(output)
y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
if args.real_value:
y_pred = torch.cat(y_pred, dim=0)
else:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
for t in range(y_true.shape[1]):
mae, rmse, mape, _, _ = All_Metrics(
y_pred[:, t, ...], y_true[:, t, ...], args.mae_thresh, args.mape_thresh
)
mae, rmse, mape, _, _ = All_Metrics(
y_pred, y_true, args.mae_thresh, args.mape_thresh
)
logger.info(
"Average Horizon, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
mae, rmse, mape * 100
)
)
@staticmethod
def _compute_sampling_threshold(global_step, k):
"""
Computes the sampling probability for scheduled sampling using inverse sigmoid.
:param global_step:
:param k:
:return:
"""
return k / (k + math.exp(global_step / k))
def _add_weight_regularisation(total_loss, regularise_parameters, scaling=0.03):
for parameter in regularise_parameters.parameters():
if parameter.requires_grad:
total_loss = total_loss + scaling * parameter.norm()
return total_loss