TrafficWheel/model/ARIMA/Transform.py

138 lines
4.3 KiB
Python
Executable File

import torch as pt
from torch.distributions.transforms import ComposeTransform
from torch.distributions.constraints import independent, real
from .torch_utils import jit_script
def calc_arma_transform(x, x_is_in_not_out, input, output, i_coefs, o_coefs, drift):
assert x_is_in_not_out.shape == x.shape[-1:]
# Match dimensions
input = input[[None] * (len(x.shape) - len(input.shape)) + [Ellipsis]].expand(
*(x.shape[:-1] + (input.shape[-1],))
)
output = output[[None] * (len(x.shape) - len(output.shape)) + [Ellipsis]].expand(
*(x.shape[:-1] + (output.shape[-1],))
)
return calc_arma_transform_core(
x, x_is_in_not_out, input, output, i_coefs, o_coefs, drift
)
@jit_script
def calc_arma_transform_core(
x, x_is_in_not_out, input, output, i_coefs, o_coefs, drift
):
# Assume last coefficient is one
i_coefs = i_coefs[..., :-1]
o_coefs = o_coefs[..., :-1]
# Trim input and output
input = input[..., (-i_coefs.shape[-1]) :]
output = output[..., (-o_coefs.shape[-1]) :]
# Loop over input
ret_val = []
for n in range(x.shape[-1]):
next_x = x[..., n][..., None]
if x_is_in_not_out[n]:
next_val = (
next_x
+ ((input * i_coefs).sum(-1) - (output * o_coefs).sum(-1))[..., None]
+ drift
)
input = pt.cat([input[..., 1:], next_x], dim=-1)
output = pt.cat([output[..., 1:], next_val], dim=-1)
else:
next_val = (
next_x
+ ((output * o_coefs).sum(-1) - (input * i_coefs).sum(-1))[..., None]
- drift
)
input = pt.cat([input[..., 1:], next_val], dim=-1)
output = pt.cat([output[..., 1:], next_x], dim=-1)
ret_val.append(next_val)
return pt.cat(ret_val, dim=-1)
class ARMATransform(pt.distributions.transforms.Transform):
"""
Invertible ARMA transform with support for transforming only part of the samples.
The transform has a Jacobian determinant of one even if only part of the samples are used as input.
See a discussion with ChatGPT on the subject at https://chat.openai.com/share/55d34600-6b9d-49ea-b7de-0b70b0e2382f.
"""
domain = independent(real, 1)
codomain = independent(real, 1)
bijective = True
def __init__(
self,
i_tail,
o_tail,
i_coefs,
o_coefs,
drift,
x=None,
idx=None,
x_is_in_not_out=None,
):
super().__init__()
self.i_tail, self.o_tail, self.i_coefs, self.o_coefs, self.drift = (
i_tail,
o_tail,
i_coefs,
o_coefs,
drift,
)
self.x, self.idx, self.x_is_in_not_out = x, idx, x_is_in_not_out
if x_is_in_not_out is not None:
if not x_is_in_not_out[idx].all():
raise UserWarning("Inputs must be innovations.")
def log_abs_det_jacobian(self, x, y):
return x.new_zeros(x.shape[:(-1)])
def get_x(self, x):
x_is_in_not_out = (
pt.tensor([True] * (x if self.x is None else self.x).shape[-1])
if self.x_is_in_not_out is None
else self.x_is_in_not_out.clone()
)
if self.x is not None:
x_clone = self.x.clone()
x_clone[..., self.idx] = x
x = x_clone
return x, x_is_in_not_out
def _call(self, x):
x, x_is_in_not_out = self.get_x(x)
x = calc_arma_transform(
x,
x_is_in_not_out,
self.i_tail,
self.o_tail,
self.i_coefs,
self.o_coefs,
self.drift,
)
if self.x is not None:
x = x[..., self.idx]
return x
def _inverse(self, x):
x, x_is_in_not_out = self.get_x(x)
x_is_in_not_out = ~x_is_in_not_out
if self.x is not None:
x_is_in_not_out[self.idx] = ~x_is_in_not_out[self.idx]
x_is_in_not_out = ~x_is_in_not_out
x = calc_arma_transform(
x,
x_is_in_not_out,
self.i_tail,
self.o_tail,
self.i_coefs,
self.o_coefs,
self.drift,
)
if self.x is not None:
x = x[..., self.idx]
return x