TrafficWheel/utils/initializer.py

117 lines
3.8 KiB
Python
Executable File

import torch
import torch.nn as nn
from model.model_selector import model_selector
from utils.loss_function import masked_mae_loss
import random
import numpy as np
from datetime import datetime
import os
import yaml
def init_model(args):
device = args["device"]
model = model_selector(args).to(device)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
nn.init.uniform_(p)
total_params = sum(p.numel() for p in model.parameters())
print(f"模型参数量: {total_params} ")
return model
def init_optimizer(model, args):
optim = args.get("optimizer", "Adam")
match optim :
case "Adam":
optimizer = torch.optim.Adam(
params=model.parameters(),
lr=args["lr_init"],
eps=1.0e-8,
weight_decay=args["weight_decay"],
amsgrad=False,
)
scheduler = args.get("scheduler", "multistepLR")
match scheduler:
case "multistepLR":
lr_scheduler = None
if args["lr_decay"]:
lr_decay_steps = [int(step) for step in args["lr_decay_step"].split(",")]
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer=optimizer, milestones=lr_decay_steps, gamma=args["lr_decay_rate"]
)
case "cosineAnnealingLR":
T_max = args.get("tmax", 5)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=T_max, eta_min=1e-8)
return optimizer, lr_scheduler
def init_seed(seed):
"""初始化种子,保证结果可复现"""
torch.cuda.cudnn_enabled = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def init_device(args):
device_name = args["basic"]["device"]
if "model" not in args or not isinstance(args["model"], dict):
args["model"] = {} # Ensure args['model'] is a dictionary
match device_name:
case "mps":
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
args["device"] = "mps"
else:
args["device"] = "cpu"
case device if device.startswith("cuda"):
if torch.cuda.is_available():
torch.cuda.set_device(int(device.split(":")[1]))
args["device"] = device
else:
args["device"] = "cpu"
case _:
args["device"] = "cpu"
args["model"]["device"] = args["device"]
return args
def init_loss(args, scaler):
device = args["basic"]["device"]
args = args["train"]
match args["loss_func"]:
case "mask_mae":
return masked_mae_loss(scaler, mask_value=None)
case "mae":
return torch.nn.L1Loss().to(device)
case "mse":
return torch.nn.MSELoss().to(device)
case "Huber":
return torch.nn.HuberLoss().to(device)
case _:
raise ValueError(f"Unsupported loss function: {args['loss_func']}")
def create_logs(args):
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
current_dir = os.path.abspath(os.getcwd())
model_name = args["basic"]["model"]
dataset_name = args["basic"]["dataset"]
args["train"]["log_dir"] = os.path.join(
current_dir, "experiments", model_name, dataset_name, current_time
)
config_filename = f"{args['basic']['dataset']}.yaml"
os.makedirs(args["train"]["log_dir"], exist_ok=True)
config_content = yaml.safe_dump(args, default_flow_style=False)
destination_path = os.path.join(args["train"]["log_dir"], config_filename)
# 将 args 保存为 YAML 文件
with open(destination_path, "w") as f:
f.write(config_content)