TrafficWheel/trainer/Trainer.py

248 lines
9.9 KiB
Python
Executable File

import math
import os
import time
import copy
import torch
from utils.logger import get_logger
from utils.loss_function import all_metrics
from tqdm import tqdm
class Trainer:
"""模型训练器,负责整个训练流程的管理"""
def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args, lr_scheduler=None):
# 设备和基本参数
self.config = args
self.device = args["basic"]["device"]
self.args = args["train"]
# 模型和训练相关组件
self.model, self.loss, self.optimizer, self.lr_scheduler = model, loss, optimizer, lr_scheduler
# 数据加载器
self.train_loader, self.val_loader, self.test_loader = train_loader, val_loader, test_loader
# 数据处理工具
self.scaler = scaler
# 初始化路径、日志和统计
self._initialize_paths(self.args)
self._initialize_logger(self.args)
def _initialize_paths(self, args):
"""初始化模型保存路径"""
log_dir = args["log_dir"]
self.best_path = os.path.join(log_dir, "best_model.pth")
self.best_test_path = os.path.join(log_dir, "best_test_model.pth")
self.loss_figure_path = os.path.join(log_dir, "loss.png")
def _initialize_logger(self, args):
"""初始化日志记录器"""
log_dir = args["log_dir"]
if not args["debug"]:
os.makedirs(log_dir, exist_ok=True)
self.logger = get_logger(log_dir, name=self.model.__class__.__name__, debug=args["debug"])
self.logger.info(f"Experiment log path in: {log_dir}")
def _run_epoch(self, epoch, dataloader, mode):
"""运行一个训练/验证/测试epoch"""
# 设置模型模式和是否进行优化
self.model.train() if mode == "train" else self.model.eval()
optimizer_step = mode == "train"
# 初始化变量
total_loss = 0
epoch_time = time.time()
y_pred, y_true = [], []
# 训练/验证循环
with torch.set_grad_enabled(optimizer_step):
progress_bar = tqdm(
dataloader,
total=len(dataloader),
desc=f"{mode.capitalize()} Epoch {epoch}"
)
for data, target in progress_bar:
# 转移数据并提取标签
data, target = data.to(self.device), target.to(self.device)
label = target[..., : self.args["output_dim"]]
# 计算输出
output = self.model(data)
# 我的调试开关
if os.environ.get("TRY") == "True":
status = '' if output.shape == label.shape else ''
print(f"[{status}]: output: {output.shape}, label: {label.shape}")
assert False
# 计算损失
loss = self.loss(output, label)
d_output = self.scaler.inverse_transform(output)
d_label = self.scaler.inverse_transform(label)
d_loss = self.loss(d_output, d_label)
# 累积损失和预测结果
total_loss += d_loss.item()
y_pred.append(d_output.detach().cpu())
y_true.append(d_label.detach().cpu())
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪(如果需要)
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
self.optimizer.step()
# 更新进度条
progress_bar.set_postfix(loss=d_loss.item())
# 合并所有批次的预测结果
y_pred, y_true = torch.cat(y_pred, dim=0), torch.cat(y_true, dim=0)
# 计算损失并记录指标
avg_loss = total_loss / len(dataloader)
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
self.logger.info(
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
)
return avg_loss
def train(self):
# 初始化记录
best_model = best_test_model = None
best_loss = best_test_loss = float("inf")
not_improved_count = 0
# 开始训练
self.logger.info("Training process started")
# 训练循环
for epoch in range(1, self.args["epochs"] + 1):
# 训练、验证和测试一个epoch
train_epoch_loss = self._run_epoch(epoch, self.train_loader, "train")
val_epoch_loss = self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
test_epoch_loss = self._run_epoch(epoch, self.test_loader, "test")
# 检查梯度爆炸
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
# 更新最佳验证模型
if val_epoch_loss < best_loss:
best_loss, not_improved_count = val_epoch_loss, 0
best_model = copy.deepcopy(self.model.state_dict())
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
# 早停检查
if self._should_early_stop(not_improved_count):
break
# 更新最佳测试模型
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
# 保存最佳模型
if not self.args["debug"]:
self._save_best_models(best_model, best_test_model)
# 最终评估
self._finalize_training(best_model, best_test_model)
def _should_early_stop(self, not_improved_count):
"""检查是否满足早停条件"""
if self.args["early_stop"] and not_improved_count == self.args["early_stop_patience"]:
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
return True
return False
def _save_best_models(self, best_model, best_test_model):
"""保存最佳模型到文件"""
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
def _log_model_params(self):
"""输出模型可训练参数数量"""
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
self.logger.info(f"Trainable params: {total_params}")
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
"""对模型进行评估并输出性能指标"""
# 验证参数类型
if not isinstance(args, dict):
raise ValueError(f"Unsupported args type: {type(args)}")
# 确定设备和输出维度
is_full_config = "basic" in args
device = args["basic"]["device"] if is_full_config else next(model.parameters()).device
output_dim = args["train"]["output_dim"] if is_full_config else args["output_dim"]
# 获取metrics参数
train_args = args["train"] if is_full_config else args
mae_thresh, mape_thresh = train_args["mae_thresh"], train_args["mape_thresh"]
# 加载模型检查点(如果提供了路径)
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(device)
# 设置为评估模式并收集预测结果
model.eval()
y_pred, y_true = [], []
# 不计算梯度的情况下进行预测
with torch.no_grad():
for data, target in data_loader:
# 将数据和标签移动到指定设备
data, target = data.to(device), target.to(device)
label = target[..., : output_dim]
output = model(data)
y_pred.append(output.detach().cpu())
y_true.append(label.detach().cpu())
# 反归一化并计算指标
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
# 计算并记录每个时间步的指标
for t in range(d_y_true.shape[1]):
mae, rmse, mape = all_metrics(
d_y_pred[:, t, ...],
d_y_true[:, t, ...],
mae_thresh,
mape_thresh,
)
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
# 计算并记录平均指标
avg_mae, avg_rmse, avg_mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
logger.info(f"Average Horizon, MAE: {avg_mae:.4f}, RMSE: {avg_rmse:.4f}, MAPE: {avg_mape:.4f}")